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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Definition of the gradient. Vector function

of. of. of
df=Vf=—"— _— —k
grad f ! BIIJF ByJ + 0z

is called a gradient of (scalar) function f(z,y, 2).
Vector differential operator V is defined by

0 0 19}
V=—i+_—j+ —k
ox 8yJ 0z
Directional derivative. The directional derivative Dy, f or o of a function f at a point P in the direction of a
s

vector b, |b| =1, is defined by

Dy f = lim (s=1Q = PI),

(@) - f(P)

where @ is a variable point on the straight line C in the direction of b.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

In the Cair'EeTsiiér; ;yz—coordinates straight line C' in parametric form is given by
r(s) = a(s)i+ y(s)j + 2(s)k = po + sb

where b is a unit vector and pg the position vector of P. Applying the definition it is easy to check, using the

d
chain rule, that Dy, f = d—f is the derivative of the function f(z(s),y(s),2(s)) with respect to s
s

d _of , 0Of Y of o,
D — 2 _ —_—
bf = ds 8xx oy 8y + 0z
, _do ;L dy , dz
— S Y Z = .
ds T ds’ ds
Differentiation gives
r'(s)=2'i+yj+2k=Db,

that is i
Dbf:—f =b-grad f
ds
( =1), or
Daf = ﬂ = —a grad f
ds |a|

where a # 0 is a vector of any length).
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Example 1

Find the directional derivative of
f(z,y,2) = 202 + 3y>
at P :(2,1) in the direction of a =i = [1,0].
Solution.
of _ of

4x7 a. = 6y7

) = 207 + 3y
Floy) =20 +3y% = By

grad f = 4zi + 6yj.
At the point P : (2,1)

grad f = 8i+ 6j = [8,6].

Since |a| = |[1,0]| = 1, we obtain

Daf = % = i-(8i+6j) = [1,0]-[8,6] = 1-840-6 = 8.

I3
At (x,3) =(2, 1), the directional derivative of fix ¥) =222 + 3%,
computed in the direction i The direction vector is projected onto the
tangent plane at the evaluation point.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

grad f points in the direction of the maximum increase of f.
Proof. From the definition of the scalar product we have
Dy f =Db-grad f = |b||grad f| cosy = |grad f|cos~ (|b] =1).

where 7 is the angle between b and grad f. Directional derivative Dy, f is maximum or minimum when
cosy =1, v=0, or, respectively cosy = —1, v = m, that is if b is parallel to grad f or, respectively —grad f.
Thus, the following statement holds.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Let f(x,y,z) = f(P) be a differentiable function. Then directional derivative Dy, f is
(i) maximal in the direction

_ gradf
~ |grad f|
and has the form
Dy f = |grad fl;
(i) minimal in the direction
grad f
 lgrad ]

and has the form
Dy f = —|grad f|.

(grad f #0).
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Surface normal vector. Let S be a surface represented by
f(z,y,z) = c = const,

where f is a differentiable function.

If f(x,y,2) €C') is a differentiable function and grad f # 0 then grad f is a surface normal vector to the
surface f(z,y,z) = C.

Proof. Let C be a curve on S through a point P of S. As a curve in space, C has a representation
r(t) = v(t) = [z(t), y(t), 2(t)] = z()i+ y()j + z(Dk.

If C' lies on surface S, the components of r(t) must satisfy f(x,y,z) = C, that is,

f(.’L'(t), y(t)7 Z(t)) =cC.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

A tangent vector to C' is
() =2/ (i+y i+ Ok

the tangent vectors of all curves on S passing through P will generally form a plane called the tangent plane of
S at P. The normal to this plane (a straight line through P perpendicular to the tangent plane) is called the
surface normal to S at P. A vector in the direction of the surface normal is called a surface normal vector of S
at P.

We can obtain such a vector by differentiating f(z(t),y(t), 2(t)) = c with respect to t. By the chain rule,

ﬁ/ ai/ ﬂ/f ’ _
2" +8yy +azz =grad f - r'(t) =0,

where
, dx ,  dy ,  dz
T = —, Yy = Z =0
dt dt dt

Hence grad f is orthogonal to all the vectors r’ in the tangent plane, so that it is a normal vector of S at P.

11/143



LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 2

Find a unit normal vector n of the cone of revolution
2 = 4(2? + y?) at the point P : (1,0,2).

Solution.
The cone is the level surface 22 = 4(z2 4 y?), or

fl@,y,2) =4a® + 49> —2° =0,

so that we have the equation of the cone as a level surface with
¢ = 0. The partial derivatives are

of of of
a = 8"E, 5 — 89, a. =
oz dy 0z
and the gradient is grad f = 8zi + 8yj — 2zk. At the point
P :(1,0,2) grad f = 81 — 4k = [8,0, —4]. We have |grad f| =
v/64 4+ 16 = +/80. The unit normal vector of the cone at P is

1 1. 1 2. 1
= Terad 152 = B = 15 VRV
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Definition of divergence. Let
V(JJ, Y, Z) =1 ($7 Y, Z)i + vz (:1:7 Y, Z).] + 'U3(.’E, Y, Z)k
be a differentiable vector function. The (scalar) function

. 8’01 81}2 8’!)3
divv=—+ —+ —
ox dy 0z

is called the divergence of v or the divergence of the vector field defined by v.
Define the vector differential operator V by

0 0 19}

V=—i+_—j+—k
Bler 8yJ+ 0z

Then we can write the divergence as the scalar product

. g9, 0, 0 . . Ovy  Ovy | Ovs
d =V-.-v=|—i+— —k)- ky=—+ — 4+ —.
v v (8xl+8y']+8z ) (v1i + vaj + v3k) ox + dy * 0z
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 3

The vector function
_ T—Z%o, Y—Yo., 6 220
p-—c( 3 i+ 3 Jj+ 3 k),

where
r=[z— 20,y — Y0,z —20] = (x —z0)i+ (y —yo)j + (2 — 20)k

and

r=1Irl = /(& — 70)2 + (v — 90)? + (= — 20)2,
describes the gravitational force (gravitational field).

Solution.
We have

T 2@ —20)% + (Y — 90)% + (2 — 20)2] r3

20 )
ay\r) B az\r) B

)

2(1) —2(xz — x0) )
ox \r

and similarly
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Then p is the gradient of the function

f(xzyvz)zg (7”>0):

J rc J rc J rc
~ons= 2 ()1 (54 £ (O
p=gradf dx \r oy \r I+ 9z \r
A vector field p is said to be a gradient of f if p =grad f; function f is called a scalar potential of p. In the
example above f is a scalar potential of the gravitational field.
Finding the second partial derivative using the chain rule with respect to z, vy, z, we obtain

0? (1)_ 1 +3(x7x0)2

oz2 \r 3 rd ’
1 _ 13- w)?
a2 \r) 13 rd ’

LA
92 \r) 13 rd '
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

By adding the righthand and lefthand sides, one can show that the potential f satisfies the Laplace equation

o*f orf | 0%f

Af = —=L - J
f ox2  Oy?  0z2

=0,

so that
divp = div (grad f) = V2f = 0.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Definition of rotation. Let x,y, z be a positive oriented Cartesian coordinate system and

v(w, Y, Z) =n (fE, Y, Z)i + v2 (fE, Y, Z).] + ’U3(£E, Y, Z)k

a differentiable vector function. Then the vector function

i j k
— — Is} 9 9 —
curlv=Vxv= 3% By o2 |T
v1 V2 V3
(@z,é&)i+(@g,éﬁ)j+<@z,éﬂ)k
Jy 0z 0z or ox dy

is called rotation (or curl) of vector field v.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 4

Let x,y, z be a positive oriented Cartesian coordinate system. Find curl of the vector field
v(z,y,z) = yzi + 3zzj + zk.

Solution. The curl of v is calculated according to

i j k
_ 2] 9 °]

curlv = 35 By o2
yz 3xz oz

0z  0(3z2)\ . O(yz) 82) . (8(33:2) 8(yz)) . .
=2 SvE_ 22 2 A Y k=— 22k
<6y 0z ) T ( 0z ox It ox oy el tyj+ 22
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

For any twice continuously differentiable scalar function f,

curl (grad f) = 0.

The potential (or conservative) field is called rotation-free.

Proof.

curl (grad f) =

of:  Ofy\. Ofs  Of:\.
(a*y‘a)”(a‘a)”(

i
9
ox
of

ox

Ofy
ox

ik ik
o 9 |=| 0 92 9
oy 0z oz oy 0z
9 9

875 % fit fy fz
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

For any twice continuously differentiable vector function v,
div(curlv) = 0. (2)
The field of rotation is called divergence-free.

Proof.

dw@mvy_é(@ﬁ_éﬂ)+8(@2_2§>+3(@z_ﬁg),
© 8z \ 9y 0z oy \ 0z ox 0z \ Ox y )

(U3y.r - 'U22.7:) + (Ulzy - U3my) + (U2.7:z - Ulyz) =0.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

More vector differential identities:
V(¢yp) =YV + V.
V- (¢F) =div(¢F) =Ve¢ - -F 4+ ¢V - F.
V- FxG)=VxF-G-F -V xG.
V x (VxF)=V(V-F)-V?F. (3)
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Formulate the divergence theorem of Gauss.

Let T be a closed bounded region in space whose boundary is a piecewise smooth orientable surface S. Let
F(z,y,z) be a vector function that is continuous and has continuous first partial derivatives in some domain

containing T'. Then
///dideV://F-ndA.
T S

In components

F} F: F:
// / (8 L o 72 —i—%) dxdydz://(Fu:osa—i—Fgcosﬁ+F3005'y)dA.
z S
F} F: F:
///(8 ! &—l—%) dxdydz://(Fldydz-l—ngzdx—i—ngxdy).
z S
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 5

Evaluate
= / /(:c?’dydz + 22ydzds + 22 zdxdy), (4)
S

where S is the closed surface consisting of the cylinder x> + y?> = a? (0 < z < b) and the circular disks z = 0
and z = b (22 +y? < a?).

Solution. )
Fy = wd, Fy = :1:2y, Fy = z°2.

Hence the divergence of F = [F, F», F3] is

) oFy oF> OF3 2 2 2 2
dvF=—+4+ —4 —=3 = ba”.
v oz ay + Ey [ S e x

The form of the surface suggests that we introduce polar coordinates
xz=rcosf, y=rsinf (cylindriska koordinater r,0, z)

and
dxdydz = rdrdfdz,
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

According to Gauss's theorem, a surface integral is reduced to a triple integral if the area T' is bounded by a
cylindrical surface S,

//(xsdydz—i-nydzdx—i-xzzdxdy):///dideV:// / 5c2dzdydz =
S T T
b a 27
5/ / / r? cos? Ordrdfdz =
z2=0Jr=0J6=0

a 27 CL4 27
5b / / r3 cos? Odrdf = 5b— / cos? 6do =
o Jo 4 Jo

a4 27 5
50— / (1 + 2cos0)do = ~wba*.
s /o 4
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 6
Evaluate
I://F-ndA, F =7zxi—zk
S

over the sphere S : z2 + y2 + 22 = 4. Calculate the integral directly and using Gauss's theorem.

Solution.
F(z,y,2) = [F1, F», F3] is a differentiable vector function and its components are

F=[F,0,F], F =Tz, F3=—z

The divergence of F is
. o OF> OF3
dvF=—+ —+4+ —==74+0—-1=6.
W or + y 0z +

4
I= // / divFdV = 6// / drxdydz = 6 - —m23 = 64n. (5)
T, klot T, klot 3

Accordingly,
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

The surface integral of S can be calculated directly. Parametric representation of the sphere of radius 2
S r(u,v) = 2cosvcosui+ 2 cosvsinuj + 2sin vk,

u,virectangle R: 0 <wu<2m, —7w/2<v<7/2

Determine the partial derivatives

ry = [—2sinucosw, 2 cos v cos u, 0],
ry, = [—2sinvcosu, —2sinvsinu, 2 cos v),
and the normal vector
i j Kk
N=ry Xry=| —2sinucosv 2cosvcosu 0 = [4cos? v cosu, 4 cos? vsin u, 4 cos v sin v].
—2sinvcosu —2sinvsinu  2cosv

On surface S,
r = 2cosvcosu, z = 2sinwv,

and
F(r(u,v)) = F(S) = [7z,0, —z] = [14 cos v cos u, 0, —2 sin v].
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.
Then ——————
F(r(u,v)) - N(u,v) = (14 cos v cos u)4 cos? v cos u + (—2sin v)(4 cos v sin v) = 56 cos® v cos? u — 8 cos v sin? u.

The parameters u,v vary in the rectangle R: 0 < u < 27, —7/2 <wv < m/2. Now, we can write and calculate
the surface integral:

27 —7/2
/ /F ndA = / / (r(u,v)) - N(u, v)dudv = 8/ / (7 cos® v cos® u — cos vsin® v)dudv =
/2

72w /2 /2
8 7/ (1+6082u)du/ cos® vdv—27r/ cosvsin? vdv p =
2 Jo —7/2 —m/2

/2 /2
567r/ cos> vdv — 167r/ cos vdv sin® vdv =
—7/2 —m/2

/2 /2
8T 7/ (1 — sin? v)dsinv—?/ dvsin? vdsinv p =
—7/2 —m/2

1 1
s 42 _ 2 — 87 (2 — _ s 6 6
8 {7/71(1 t%)dt 2/717& dt} 8nl7-(2—2/3) —4/3] = 87-4/3 -6 = 64

coinciding with the value (5).
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LECTURE 1
HARMONIC FUNCTIONS
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LECTURE 1: HARMONIC FUNCTIONS

A twice continuously differentiable real-valued function u defined on a domain D is called harmonic if it satisfies
Laplace's equation

Au=0 in D, (6)
where ) )
0%u  0%u
Au=—+_— 7
U o2 + Oy? (")

is called Laplace operator (Laplacian), the function u = u(x), and x = (x,y) € R2. We will also use the
notation y = (zo,yo).

The function
1 1

(x,y) = 2(x—y) = glnm

(®)

is called the fundamental solution of the Laplace equation. For a fixed y € R?, y # x, the function ®(x,y) is
harmonic, i.e., satisfies Laplace's equation

2 9%

57 T =0 i D 9)

The proof follows by straightforward differentiation.
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LECTURE 1: HARMONIC FUNCTIONS

Let D € R? be a (two-dimensional) domain bounded by the closed smooth contour I" and % denote the

directional derivative in the direction of unit normal vector n, to the boundary I' directed into the exterior of I
and corresponding to a point y € I'. Then for every function u which is once continuously differentiable in the
closed domain D = D + T, u € C1(D), and every function v which is twice continuously differentiable in D,

v € C?(D), Green's first theorem (Green's first formula) is valid

//(uAv + gradu - gradv)dx = /uaa—vdly, (10)
D "

where - denotes the inner product of two vector-functions. For u € C2(D) and v € C?(D), Green's second
theorem (Green’s second formula) is valid

(uAv — vAu)dx = uﬁ — vﬂ dly, (11)
o 2 Y
5 L Ty Ty

Let a twice continuously differentiable function u € C2(D) be harmonic in the domain D. Then Green's third
theorem (Green'’s third formula) is valid

ou 0P (x,y)
u(x) = P(x,y)— —uly) —————= ) dly, x€D. 12
()F/((”any 0 e )y, xe (12)
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LECTURE 1: HARMONIC FUNCTIONS

closed smooth contour T', continuous in D = D UT and satisfies the Dirichlet boundary condition:
Au=0 in D, (13)
ulp = —f, (14)

where f is a given continuous function.
Formulate the interior Neumann problem: find a function u that is harmonic in a domain D bounded by the

closed smooth contour I', continuous in D = D UT and satisfies the Neumann boundary condition

ou

2 = 15
on 5 (15)

T

where g is a given continuous function.

The interior Dirichlet problem has at most one solution.

Two solutions of the interior Neumann problem can differ only by a constant. The exterior Neumann problem
has at most one solution.
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LECTURE 1: HARMONIC FUNCTIONS

In the theory of BVPs, the integrals

2 B,y (16)
Y

u(x) = /E(x, v)é(y)dly, v(x)=

C C
are called the potentials. Here, x = (z,9y), y = (z0,y0) € R?; E(x,y) is the fundamental solution of a
second-order elliptic differential operator;

9 _ 9
dny,  Ony
is the normal derivative at the point y of the closed piecewise smooth boundary C of a domain in R2; and £(y)
and n(y) are sufficiently smooth functions defined on C'. In the case of Laplace operator Au,
1

— In ——.
2 |x —y|

(17)

E(x,y) = ®(x—y) =
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LECTURE 1: HARMONIC FUNCTIONS

In the case of the Helmholtz operator L(k) = A + k2, one can take E(x,y) in the form

i 1
Bxy) = B =) = pHE (bx = y1) = - In o=+ hlkbx = y)), (18)

x -yl

where Hél)(z) = —4i®(2) + h(z) is the Hankel function of the first kind and zero order (one of the so-called

is the kernel of the two-dimensional single layer potential;

cylindrical functions) and ®(x —y) = — In
2 |x—yl

iL(Z) and h(z) are continuously differentiable and their second derivatives have a logarithmic singularity.
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LECTURE 1: HARMONIC FUNCTIONS

Let D € R? be a domain bounded by the closed smooth contour T'. Then the kernel of the double-layer potential

0P(x,y) 1 1

Vxy)=—F—"" 2y =—"h—-F (19)
ony 2r  |x—y]|
is a continuous function on T for x, y € I.
Gauss formula Let D € R? be a domain bounded by the closed smooth contour I". For the double-layer
potential with a constant density
o 1 1
00(x) =/ﬂdly, D(x,y) = —In ——, (20)
ony 2r  |x—y|
where the (exterior) unit normal vector n of T' is directed into the exterior domain R? \ D, we have
Wx) = -1, xeD,
1
WO(x) = —3 * er, (21)
W(x) = 0, xeRZ\D.
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LECTURE 1: HARMONIC FUNCTIONS

Corollary. Leitilij’E R? be a domain bounded by the closed smooth contour T'. Introduce the single-layer
potential with a constant density

1

1
2r - [x -y
r
For the normal derivative of this single-layer potential
oud 0P
uO (x) :/ (x,y) dly, (23)
Ong ong
r
where the (exterior) unit normal vector n  of T is directed into the exterior domain R? \ D, we have
p) 0
u’ (x) — 1. xeD,
ong
0 1
ol _ 1 ser (24)
ong 2
ou’ _
) ) xeRr?\D.
ong
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LECTURE 1: HARMONIC FUNCTIONS

Theorem 10
Let D € R? be a domain bounded by the closed smooth contour T'. The double-layer potential

9B (x, 1 1
ﬂw(y)dly, P(x,y) = —1

n———. 25
ony 2 |x—y| (25)

v(x) =
r

with a continuous density @ can be continuously extended from D to D and from R?> \ D to R? \ D with the
limiting values on I

0D (x’ 1
va (x) = / 023 oty + Lo(x), €T, (26)
Ony 2
or
/ / 1 ! /
v+ (x') = v(x") £ Ew(x ), x €T, (27)
where
N 1: ,
vt (x') = hl_l}n;()v(x + hngr). (28)
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LECTURE 1: HARMONIC FUNCTIONS

Corollary. Let D € R2 be a domain bounded by the closed smooth contour I'. Introduce the single-layer
potential

1 1
uG) = [ @0xy)edly, Blxy) =5l (29)
2r [x -yl
r
with a continuous density ¢. The normal derivative of this single-layer potential
ou(x 0P(x,y
N (30)
M ong
r
can be continuously extended from D to D and from R?\ D to R?\ D with the limiting values on T
Ou(x’ 0D (x’ 1
ulx)) / CLY) yydty F So(x), x €T, (31)
ong + Ong: 2
r
” du(x) _ dulx)
u(x u(x 1 , ,
=——"F= , er, 32
o 1 oms Foel), x (32)
where Bu(x)
u(x .
o, hlgio Ngs - grad v(x’ + hngr). (33)
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LECTURE 1: HARMONIC FUNCTIONS

Let S (T) € R% be a domain bounded by the closed piecewise smooth contour T'. We assume that a rectilinear
interval g is a subset of ', so that I'o = {x: y =0, z € [a, ]}

Let us say that functions U;(x) are the generalized single layer (SLP) (I = 1) or double layer (DLP) (I = 2)
potentials if

Ui(x) = / Ki(x, u(t)dt, x = (2,9) € Sn(T),
N

where
Kl(xvt):gl(xrt)+Fl(x7t) (l:172)7

1

g1(x,t) = g(z,y°) = —In
T |x—

1
T _ <01’ 92(x7t) = 79()() yD) [yO = (tv 0)]7
¥ Oyo

F1,2 are smooth functions, and we shall assume that for every closed domain Sorr(I') C Sti(T), the following
conditions hold

i) Fi(x,t) is once continuously differentiable with respect to the
variables of x and continuous in t;
i) Fa(x,t) and
t
1 0 1
Fy(x,t) = B0 Fy(z,s)ds, q€R",
Y

q

are continuous.
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LECTURE 1: HARMONIC FUNCTIONS

Kot =2 [ P22V, xer (34)
Yy
and P
i =2 [ 25 ya,, xer. (35)
T

Theorem 11

The operators I — Ko and I — K; have trivial nullspaces

N(I — Ko) ={0}, NI -Ky)={0},
The nullspaces of operators I + Ko and I + K1 have dimension one and
N(I + Ko) =span{1}, N(I+ K1) = span{v¢o}

with

F/Wﬂy #0.
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Theorem 12

Let D € R? be a domain bounded by the closed smooth contour T'. The double-layer potential

] 1 1

v(x) = / Mgp(y)dly7 d(x,y) = —In—, x€D, (36)
ony 2 |x—y]|

r

with a continuous density o is a solution of the interior Dirichlet problem provided that ¢ is a solution of the
integral equation
02(x,y)

—2
o(x) on,

r

p(y)dly = =2f(xz), x€T, (37)
where f(x) is given by (14).

Theorem 13

The interior Dirichlet problem has a unique solution.
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Theorem 14

Let D € R? be a domain bounded by the closed smooth contour T'. The double-layer potential

u) = [ 225N oy, xeR\D, (38)
ny

with a continuous density @ is a solution of the exterior Dirichlet problem provided that ¢ is a solution of the
integral equation

p(x) + 2/ 8438(:;,}y) p(y)dly =2f(z), xe€T. (39)

Here we assume that the origin is contained in D.
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Theorem 15

The exterior Dirichlet problem has a unique solution.

Theorem 16
Let D € R? be a domain bounded by the closed smooth contour I'. The single-layer potential

u(x) = / B(x,y)(y)dly, x €D, (40)

T

with a continuous density 1) is a solution of the interior Neumann problem provided that 1) is a solution of the
integral equation
9%(x,y)

an Y(y)dly = 2g(z), x€T. (41)

Y(x) +2
ir

Theorem 17

The interior Neumann problem is solvable if and only if

/ Pdly =0 (42)
T

is satisfied.
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LECTURE 1: GREEN’S FORMULA. LINE INTEGRALS. SURFACE INTEGRALS

Curves in a parametric form and line integrals. Let zyz be a Cartesian coordinate system in space. We write a
spatial curve C using a parametric representation

r(t) = [z(t),y(1), ()] = z(O)i+ y(O)j+ 2Dk (L), (43)

where variable t is a parameter.

As far as a line integral over a spatial curve C' is concerned, C' is called the path of integration. The path of
integration with spatial endpoints A to B goes from A to B (has a certain direction) so that A :=r(a) is its
initial point and B := r(b) is its terminal point. C' is now oriented. The direction from A to B, in which ¢
increases is called the positive direction on C. Points A and B may coincide, then C' is called a closed path.
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Definition of line integral. If C is an oriented curve in a parametric form
P=P@kt) (z=z), y=y{), z==z(r) tel=(to,t1), t: to— ti, (44)

and f(P) and g(P) are real (or complex) function defined on C, the line integral of a scalar function is defined
as

t=tq
[ 1Pragey = [ ppe)daPe), (45)
C t

=to

(if the right-hand side in the equality specifying the integral exists).

A line integral of a vector function F(r) over a curve C' is defined by

/c F(r)-dr — /ab F(r(t)) - %dt,

or componentwise

b
/ F(r) - dr = / (Frdz + Fody + Fedz) :/ (Fia + Py + Fs2)dt (‘= d/db).
C C a
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Example 7

Find the value of the line integral when F(r) = [—y, —zy] and C is a circular arc from (1,0) to (0, 1).
Solution. We may represent C' by
r(t) = [cost,sint] = costi + sintj, (46)

and
r(t) = [cost,sint], t: 0— /2.

The parameter interval is I = (to,t1) with the initial point to = 0 and endpoint t; = 7/2. In such an
orientation,
P(0) = (cos0,bsin0) = (1,0)

is the initial point and
P(n/2) = (acos7/2,bsinm/2) = (0,1)

is the endpoint.
We have x = cost, y = sint and can write vector function F(r) on the unit circle

F(r(t)) = —y(®)i— z(t)y(t)j = [—sint, — costsint] = —sinti — costsin ¢j.
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Determine
r'(t) = —sinti + costj

and calculate the line integral:

/2
/ F(r) -dr = / (—sinti — costsintj) - (—sinti + costj)dt =
C 0

/2 /2
/ (sin®t — cos® tsin t)dt = / [(1/2)(1 = cos 2t) — cos® tsint]dt =
0 0

W=

/2 /2
(1/2)/ [(1—0052t)dt+/ cos® tdcost =
0 0

N
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Examp|e8 B

Find the line integral for F(r) = [52, zy, 22| when curves C1 and Co have the same initial point A : (0,0,0)
and endpoint B : (1,1,1), C1 is an interval of the straight line

ri(t) = [ttt =ti+tj+tk, 0<t<1,
and Cs is a parabola
ro(t) = [t,t, 6] =ti+tj+t°k, 0<t<1.
Solution. We have
F(ri(t)) = 5ti + t2j + 3k, F(ra(t)) = 5% + t2j + t'k,
) =i4j+j, rh(t) =i+j+ 2.
Then we can calculate the line integral over Cy

137

1 1 5 1
F(r)-dr= | F t-’tdt:/ St+t2+t3)dt =+ -+ - = .
[ Fw = [TPE@) swa= [T ia=De te g =T

The line integral over Cy is
1 1 5 1 2

/ F(r) - dr = / F(ra(t)) - rh(t)dt = / G2 +2+280)dt ==+ -4+ = ==,

Co 0 0 3 3 6 12

Thus we have got two different values.
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Theorem 18

The line integral
/ F(r) -dr = / (Frdz + Fady + Fsdz),
C (o}

where F, Fa, F3 are continuous functions on a domain D in space, is path independent in D, if and only if
F = [F1, F», F3] is the gradient of a function f = f(x,y,2) in D :

F = grad f;
with the components
Flig, FQZg, F3:ﬂ~
oz dy 0z

If ¥ is the gradient field and f is a scalar potential of F then the line integral
[ F@)-ds = 5(8) - 7(4)

where A is the initial point and B the endpoint of C.
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Example 9

Show that the integral
/ F(r)-dr = / (2zdz + 2ydy + 4zdz)
C C

is path independent in any domain in space and find its value if integration is performed from A : (0,0,0) to B : (2,2,2).

Solution. We have
F = [22,2y,4z] = 2zi + 2yj + 42k = grad f,

and it is easy to check that
f@,y,2) =2 + ¢ 4 22°

According to Theorem 18, the line integral is path independent in any domain in space. To find its value, we choose the

convenient straight path
r(t) =[t,t, ] =t(i+j+k), 0<t<2

Let A:(0,0,0), t = 0, be the initial point and B : (2,2,2), ¢t = 2 the endpoint. Then we get
() =i4+j+]
F(r) v/ =2t +2t+4t =8t
and

2 2
/ (2zdx + 2ydy + 4zdz) = / F(r(t) - r'(t)dt = / 8tdt = 16.
C 0 0

According to Theorem 18,
/ F(r)dr = f(2,2,2) — f(0,0,0) =4+4+2-4—0=16.
C
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Theorem 19

The line integral
/ F(r) -dr = / (Fidz + Fady + F3dz)
C C

where Fy, F», F3 are continuous functions on a domain D in space is path independent in D if and only if

AF(r)~dr=0

along every closed path C in D.

The differential form
Fidz + ngy + Fsdz

is called exact in a domain D in space if it is the differential

af of of
df = ——d —d —d
4 ox ot oy v+ 0z o

of a differentiable function f(x,y, z) everywhere in D:
Fidx + ngy + Fsdz = df,

where 5 9 8
O O L of

F = = .
1T B dy 0z
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Green’s formula. Let C be a closed curve in zy-plane that does not intersect itself and makes just one turn in
the positive direction (counterclockwise). Let Fi(z,y) and Fx(z,y) be functions that are continuous and have

. . A 1 2 . .
continuous partial derivatives 8— and —— everywhere in some domain R enclosed by C. Then
i

//(§§4@QW@=AWW%&@y

Here we integrate along the entire boundary C of R so that R is on the left as we advance in the direction of
integration.
One can write Green's formula with the help of curl

/R/(curlF)'kdxdy:/cF~dr.
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Example 10
Verify Green's formula for Fy = y? — Ty, Fy = 2zy + 2z and C being a circle R : z? + y? = 1.

Solution. Calculate a double integral

//(%_%)ddy—//m?ﬂr? (2y - 7]dmdy—9//dmy_97r

Calculate the corresponding line integral. Circle C' in the parametric form is given by
r(t) = [cost,sint] = costi + sin tj.
r’(t) = —sinti + costj.

OnC
Fy =y? — Ty =sin®t — Tsint, Fy = 2zy+ 2z = 2costsint + 2cost,

and we get that the line integral in Green's formula is equal to the double integral:

27
/ F(r) -dr = / [(sin®t — 7sint)(—sint) + (2costsint + 2cost) costldt = 0+ Tm 4 0 + 27 = 97.
C 0
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Surface integral. To define a surface integral, we take a surface S given by a parametric representation
r(u,v) = [z(u,v), y(u,v), 2(u,v)] = z(u, v)i + y(u,v)j + z(u,v)k, u,v €R,

the normal vector
N=ry Xry #0,

and unit normal vector 1

N

A surface integral of a vector function F(r) over a surface S is defined as

F-ndA = F(r(u,v)) - N(u,v)dudv. (47)
ffrmaa= ]

n=
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Note that
ndA = n|N|dudv = |N|dudv,

and we assume that the parameters u, v belongs to a region R in the u,v-plane.
Write the equivalent expression componentwise using directional cosine:

F = [F1, Fp, F3] = Fii + F2j + F3k,
n = [cos a, cos 3, cosy] = cos ai + cos Bj + cosk,

N = [N17N27N3] = Nii+ Naj + N3k,

//F-ndA://(FlcosaJrFgcos,8+FchS'y)dA:
S S

/ /(FlNl + F5No + F3N3)dud’l).
S

and
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Example 11

Evaluate a surface integral of the vector function F = [22,0, 3y?] over a portion of the plane

S:z+y+z=1, 0<x,y,z2< 1.
Solution. Writing = w and y = v, we have z =1 — u — v and can represent S in the form
r(u,v) =[u,v,1—u—v], 0<v<1 0<u<l—o.

We have
r, =[1,0,-1], r,=10,1,-1];

a normal vector is

N=ryXr,=|1 0 -1 |=i+j+k=][1,1,1].
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The corresponding unit normal vector

1
|N|N 7(1 +j+k).

On surface S,
F(r(u,v)) = F(S) = [u2,0,3v%] = u?i + 3v%k.
Hence
F(r(u,v)) - N(u,v) = [u2,0,302] - [1,1,1] = u? + 302,

Parameters u, v belong to triangle R: 0 <wv <1, 0 <u <1—v. Now we can write and calculate the flux

integral //F.ndA:/ /F(r(u,v))'N(u,v)dudv=/ /(U2+302)d“d”:
/ /1 "2 + 302 dudv—/ dv/1 ’ 2d““’/ 2d”/l U

:(1/3)/0 (1—v) dv+3/ 2(1 - v)dv = 1/3)/ t3dt+3/( — o¥)dv =
(1/3) - (1/4) + 3(1/3 — 1/4) = 1/3.
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LECTURE 1: BASIC ELECTROMAGNETIC THEORY. MAXWELLS AND HELMHOLTZ EQUATIONS.

The classical macroscopic electromagnetic field is described by four three-component vector-functions E(r, t),
D(r,t), H(r,t), and B(r, ) of the position vector r = (z,y, z) and time t. The fundamental field vectors
E(r,t) and H(r,t) are called electric and magnetic field intensities. D(r,t) and B(r, t) which will be eliminated
from the description via constitutive relations are called the electric displacement and magnetic induction. The
fields and sources are related by the Maxwell equation system

oD

— —rotH = -J, (48)

ot

aa—]f +rotE = 0, (49)
dvB = o, (50)
divD = p, (51)

written in the standard Sl units.
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The constitutive relations are

D = «¢E, (52)
B = uH, (53)
J = oE. (54)

Here €, u, and o, which are generally bounded functions of position (the first two are assumed positive), are
permittivity, permeability, and conductivity of the medium for J being the conductivity current density.

In vacuum, that is, in a homogeneous medium with constant characteristics € = €, 4 = po, and o = 0, the
Maxwell equation system takes a simpler form

tH = eoo, 55

ro €0 8t ( )
O0H

tE = —po—, 56

ro Ko (56)

divH = 0, (57)

dvE = p. (58)
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In the case of a homogeneous medium, it is reasonable to obtain equations for each vector E(r,¢) and H(r,¢).
To this end, assume that p = 0. Applying the operation rot to equation (48) and taking into account the
constitutive relations, we have

o
rotrotH = earotE + orotE. (59)

Using the vector differential identity rotrotA = graddiv A — AA and taking into notice equation (49), we
obtain the equation for magnetic field H

92H oH
ddivH — AH = —ep—— — op——o
graddiv €L o2 opn o
or
1 9°H OH 1
AH= — —— uining 2= 60
a? Ot? top ot (a eu) (60)

because divH = 0.
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The same equation holds for electric field E

1 92E OE 1
AE= ——— = 2= ). 61
2o Mo (“ > (61)

Equations (60) or (61) hold for all field components,

1 9%u ou
_ 1 ou 62
YS e T (62)
where u is one of the components Hy, Hy, H, or Ex, Ey, E,.
If the medium is nonconducting, o = 0, then (60), (61), or (62) yield a standard wave equation
1 0%u
=27 63
YT 2 o (63)

This implies that electromagnetic processes are actually waves that propagate in the medium with the speed

1
a = —— (the latter holds for vacuum).
G
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Time-periodic_(time-harmonic) fields

H(r,t) = H(r)e ™?, E(r,t) = E(r)e” ™t

(64)

constitute a very important particular case. Functions E and H are the field complex amplitudes; the quantities

Re E and Re H have direct physical meaning.

Assuming that complex electromagnetic field (64) satisfies Maxwell equations and that the currents are also

time-harmonic, J(r,t) = J(r)e™*?, substitute (64) into (48)—(51) to obtain

rotH = —iwD+J,
rotE = wB,

divB = 0,

divD = »p.

Since J = oE, equation (65) can be transformed by introducing the complex permittivity
’ .0
€ =et+i1—.
w

As a result, system (65)—(68) takes the form

rotH = —iweE,

rotE = dwuH,
div(pH) = 0,
div(eE) = p.

(69)
(70)
(71)
(72)

In a homogeneous medium and when external currents are absent, equations (71) and (72) follow from the first

two Maxwell equations (69) and (70).
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Consider the simplest time-harmonic solutions to Maxwell equations in a homogeneous medium (with constant
characteristics), plane electromagnetic waves. In the absence of free charges when divE = 0, the electric field

vector satisfies the equation
rotrotE = w?e'uE,
or
AE + <°E = 0,
where

2

e/:eJrig, k2 = w2 p = k% +iwpo, k=w\/en.
w

In the cartesian coordinate system, equation (74) holds for every field component,
Au + k?u =0,

where u is one of the components E., Ey, E..
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LECTURE 1: BASIC ELECTROMAGNETIC THEORY. MAXWELLS AND HELMHOLTZ EQUATIONS.

The Helmholtz equation (76) has a solution in the form of a plane wave; componentwise,
Eo = EQeilrevtryytrzz) 2 4 nz +r2=r2 (a=2y9,2). (77)
Here k is called the wave propagation constant. Therefore, the vector Helmholtz equation (74) has a solution
E = Egel(fertryytnz2) — goelkr, (78)
where the vectors
k = (kz,ky,kz), r=(z,9,2), Eo=const. (79)
Since divE = 0, we have
divE = div (Ege’* ") = ie’* Tk - Eg = 0.

Thus, k- Eg = 0 so that the direction of vector E is orthogonal to the direction of the plane wave propagation
governed by vector k.

65 /143



LECTURE 1: BASIC ELECTROMAGNETIC THEORY. MAXWELLS AND HELMHOLTZ EQUATIONS.

Vectors E and H are coupled by the relation
rotE = iwuH. (80)
Since
rot (Ege™ T) = [grad e’*'T, Eo],
we have
Ve ko, Eo] = \/uHo, (81)

where ko = k/|K| is the unit vector in the direction of the wave propagation. Thus, vectors E and H are not
only orthogonal to the direction of the wave propagation but also mutually orthogonal:

E-H=0, E-k=0, H-k=0. (82)
We see that the Maxwell equations have a solution in the form of a plane electromagnetic wave

E(r) = Ege’®*, H(r) = Hpe'k T, (83)
where

Vélko, E] = uH, /alko, H] = —V¢E, (84)
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Introduce the dimensionless variables and parameters

kor =z, +/po/eoH—H, E —E, lcgzsguowQ,

where €g and po are permittivity and permeability of vacuum. Propagation of electromagnetic waves along a
tube (a waveguide) with cross section £ (a 2-D domain bounded by smooth curve T") parallel to the z3-axis in
the cartesian coordinate system =1, x2, x3, X = (z1, x2, x3), is described by the homogeneous system of
Maxwell equations (written in the normalized form) with the electric and magnetic field dependence ¢'7*3 on
longitudinal coordinate 3 (the time factor ¢! is omitted):

rotE=—H, xgcZX,

rot H = icE,

E(x) = (BE1 (x') e1 + B2 (x') e2 + B3 (x') e3) €773, (85)

H(x) = (Hy (x')e1 + Ha (x') ez + H3 (x') e3) e7%3,

x' = (z1, x2),
with the boundary conditions for the tangential electric field components on the perfectly conducting surfaces

Erly =0, (86)
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Write system of Maxwell equations (85) componentwise

OH: OFE:
il A iyHo = ieEq, 7= iyEy = —iHy, iyH1 — —— =1ieko,
Oz 16) o0z
OFE: OH: OH
ivEp — 7= —iHo, 2 1

OF
22 L e, 2 _%5 _
o1

o1 Oz o
and express functions E1, Hi, E2, and Hz via E3 and H3 from the first, second, fourth, and fifth equalities
denoting k2 = ¢ — 42,

OFE:- OH: i OFE OH.
e (2 02). om0
k2 ox1 Oxa

87
Oxa oz (87)
; OE: OH: ] OF: OH:
lei( 3+ 3) H2_~L(_75+ 3)
k2 Oz 8x1 k2 o1 Oxo
Note that this representation is possible if v2 # €1 and 72 # &2

It follows from (87) that the field of a normal wave can be expressed via two scalar functions

I (z1,22) = E3 (z1,22), Y (21,22) = H3(21,22).
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If to look for particular solutions with E3 = 0 then we have a separate problem for the set of component
functions [E1, B2, H3], [H1, H2,0] which are called TE-waves (transverse electric) or the case of H-polarization.
For particular solutions with Hz = 0 we have a problem for the set of component functions [H1, Ha, E3],

[E1, E9,0] called TM-waves (transverse magnetic) or the case of E-polarization. These two cases constitute
two fundamental polarizations of the electromagnetic field associated with a given direction of propagation.

For v = 0 when we consider fields independent of one of the coordinates (z3) we have two separate problems
for the sets of component functions [E1, E2, H3], TE-(H)polarization, and [H1, Ha, E3], TM-(E)polarization.
Thus the problem on normal waves is reduced to boundary eigenvalue problems for functions IT and W. Namely,
from (85) and (86) we have the following eigenvalue problem on normal waves in a waveguide with
homogeneous filling: to find v € C, called eigenvalues of normal waves such that there exist nontrivial solutions
of the Helmholtz equations

Al + k2T =0, x' = (x1,22) €Q (88)
AV + 20 =0, k> =¢—+2 (89)
satisfying the boundary conditions on I'g
ov
M. =0, —| =0, 90
I s, (90)

In fact, it is necessary to determine only one function, Hg for the TE-polarization or E3 for the
TMe-polarization; the remaining components are obtained using differentiation.
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LECTURE 1: STATEMENTS AND ANALYSIS OF THE BVPS FOR MAXWELLS AND HELMHOLTZ EQUATIONS.

In the two-dimensional case, the Helmholtz equation £(k?)u = 0 written in the polar coordinates r = (r, ¢) has
the form
10 ou 1 8%u
-7 (22 4 k2y=0. 91
Tar(Tar)+T28¢2+ “ (01)

Assume that the function u = u(r) satisfies the Helmholtz equation outside a circle of radius rg. On any circle
of radius r > rg function u can be decomposed in a trigonometric Fourier series

oo
ur) = > un(r)e™® (0< ¢ < 2m), (92)
n=—oo
where the coefficients
1 27 X
un(r) = —/ u(r)e " "?dg (93)
2w 0

are functions of 7. In order to find u, (r) multiply equations (91) by ie*i’wﬁ and integrate over a circle of

radius r.
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As a result of integration, we obtain
1d [ d 2
- (Tﬁ)—n—un—i—kQun:O, n=0,+1,.... (94)
rdr dr r2

(94) is a second-order ordinary differential equation with constant coefficients for u, (r) which holds for r > rq.
Equation (94) is actually the Bessel equation of order n. lts general solution can be written as

un(r) = AnHS (k1) + Bo HE (kr), (95)
where H,(zl’Q)(z) are its linearly independent solutions; they are the nth-order Hankel functions of the first and
second kind, respectively.

Thus any solution u = u(r) to the homogeneous Helmholtz equation (satisfied outside a circle of radius rg) can
be represented for r > rq in the form of a series

u(r) = Z [AnHﬁbl)(kr) + BnH,?)(kr)]emd’ (0< ¢ <2m, r>m). (96)

n=-—oo
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At infinity, the following asymptotical formulas are valid

Hﬁll’Q)(Z) - 1/i€ii(Z7%*%) +0 (%) , (97)
Tz z

which yields an asymptotic estimate of the solution to the homogeneous Helmholtz equation at infinity

u(r) = O (%) . (98)

For the zero-order Hankel functions of the first and second kind, respectively, the following asymptotical

formulas are valid
(1) _ 2 i(s—x)
Hy'(z) = —e i)+, (99)
Tz

2 ; ™
H(()Q)(z) = w/;eﬂ(zfz)+...,
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Let us recall-first that the plane waves propagation along the z-axis have the form

u:f(::—f), é:f(t+f>, (100)
a a

where @ and 4 are, respectively, the forward wave (propagating in the positive direction of the z-axis) and
backward wave (propagating in the negative direction of the z-axis). They satisfy the following first-order
partial differential equations

ou 104

L 101
ox + a Ot (101)
o4 194
uw_Z _ . (102)
or a Ot
In the stationary mode
u = v(z)e? (103)
For the amplitude function v these relations take the form
o%
P hike = 0, (104)
ox
P b = 0, (105)
ox

w
for the forward and backward waves, respectively, where k = —.
a
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Spherical waves. If a spherical wave is excited by the sources situated in a bounded part of the space (not at
infinity), then at large distances from the source, a spherical wave is similar to a plane wave whose amplitude

decays as —. This natural physical assumption leads to a conclusion that the outgoing, respectively, incoming,

r
spherical waves must satisfy the relationships

ou 10u 1
T 2, 106
or * a ot ° (7") (106)
ou 10u 1
Z_ 22 = ). 107
or a0t ° (r) (107)
For the amplitude functions in the stationary mode we have
ov . 1 . .
a + 1k = ol - for outgoing spherical waves, (108)
r r
ov . 1 . . .
o kv = ol - for incoming spherical waves. (109)
r r
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. . 1
Let us prove now that at large distances from the source, any outgoing spherical wave decays as —.

T
1. In the case of a point source at the origin, this statement is trivial because the wave itself has the form

et(wt—kr) X
u(r,t) = ———— = vo(r)e'*?, (110)
r
so that
1
9% 4 ik = o (7) . (111)
or r

Check this relationship.
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2. Let-a-spherical wave be excited by a point source situated at a point ro. The amplitude of the spherical
wave is ===

tkR

el
vo(r) = R

Calculating the derivative we obtain

OR r—rpcosf 1
- = " ~140|(= 113
or R + (r) (113)

R=|r—rg| =/72 413 — 2rr¢ cosf. (112)

and
in view of (111). Next,

because

Finally,

%—&-ikvo—&-o(l) :0(1> (114)
or T r

what is to be proved.
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3. Show that the volume potential

e—ikR
o(r) =/ f(ro) drry, R=|r—rol, (115)
T R
satisfies condition (108). Introducing the notation

Pv = — +ikv, (116)
ar

Pvf/fro (%R)d% /fro (1)dn070<i>. (117)

Volume potential (115) is the amplitude of an outgoing wave excited by the sources distributed arbitrarily in a
bounded domain T. Also, function v defined by (115) satisfies the inhomogeneous Helmholtz equation

we obtain

1
L(k?)u = —f and decays as ~ for r — co. In addition, it satisfies the condition

T
i+zkv—o(1>. (118)
or r
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Theorem 20

There is one and only one solution to the inhomogeneous Helmholtz equation
LK) = (A + kv = —f(r), (119)

where f(r) is a function with local support, which satisfies the conditions at infinity

. - 0(1), (120)

r
1
%—l—ikv = o(;).

Proof. Assuming that there are two different solutions v; and va and setting
w = v1 — V2,

we see that w satisfies the homogeneous Helmholtz equation £(k2)w = 0 and the conditions at infinity (120).
Let X be a sphere of radius R (later, we will take the limit R — oo). Applying the third Green formula to

—ikR
w(r) and the fundamental solution ¢q(ro) = . R = |rg — r|, we arrive at the integral representation of w
™
at a pointr € X
ow 0
we) = [ [o00) 52 = w2 (Gao)) | doy: (121)
SR or ar
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The conditions at infinity (120) for w(r) and ¢o(r) yield

¢O%w —wl (o) = o [fikw +o (1>] - (122)
s ov r
- (] (2)
r r r r
Therefore,
1
w(r) = ./zR o (T—Z) dor, -0, R — oo. (123)

This implies w(r) = 0 at any r € X i and thus at any spatial r.
Conditions (120) are called Sommerfeld radiation conditions.
In the two-dimensional case the Sommerfeld radiation conditions at infinity take the form

v = O (%) : (124)
Jim v/ (% + ik:v)

Il
e
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Theorem 21

Let ug(r) be a solution to the Helmholtz equation satisfied outside a circle of radius ro. If

lim [u|?dl = 0, (125)
7—00 Cr
where C- is a circle of radius r, then u =0 forr > rg.

Proof.  Any solution u = u(r) to the (homogeneous) Helmholtz equation (satisfied outside a circle of radius
ro) can be represented for r > rg in the form of series (96)

u(r) = Z un(r)e™?, un(r) = AnHﬁLl)(kr) + BnH,(f)(kr) (0<p<2m, r>r10). (126)
Therefore,
(oo}
. 2 _ 2
Jim . lul?dl =27 > rlua(r)]?. (127)

n=-—oo
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lim lu|?dl = 0,
00 C,

then (127) yields
lim 7lun(r)? =0, n=0+1,%2,.... (128)
T—>00

2

Next, according to asymptotical formulas (97) for Hankel functions 7|un (7)|* are bounded quantities at r — oo,

namely,
1
rlun(r)|? = rO (7) =0(1), n=0,%1,%£2,..., (129)
T

which, together with (128), implies
Ap=Bn=0, n=041,42,..., (130)

and, consequently, u = 0 for 7 > rg in line with representation (126).
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Theorem 7 ]

Let ug(r) be a solution to the Helmholtz equation satisfied outside a sphere Sy, of radius rq. If
lim / |u|?ds = 0, (131)
r=o g,

then u =0 forr > rg.

For the vector solutions of Maxwell equations (69) and (70), electromagnetic field E(r), H(r), the similar
statements are valid

Theorem 23

Let E(r), H(r) be a solution to the Maxwell equation system satisfied outside a sphere of radius ro. If

lim / |[H, er]|?ds = 0, (132)
™00 ST
or
lim I[E,er]|?ds =0, (133)

=00 Jg
r

where Sy is a sphere of radius r and e, = r/r is the unit position vector of the points on Sy, then E(r) = 0,
H(r) =0 for r > ro.
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Formulate a scalar (acoustical) problem of the wave diffraction by a transparent body ;. Let 21 be a
domain bounded by a piecewise smooth surface 3. The problem under consideration is reduced to a BVPs for
the inhomogeneous Helmholtz equation with a piecewise constant coefficient

Aug(r) + kguo(r) = —fo, reQo=R*\Q, (134)
Aui(r) + k%ul(r) = —f1, reQ;
solution u satisfies the conjugation conditions on %
ouq Jug
_ =0 - _ =0 135
o ’ on on ’ (135)
and the conditions at infinity
1
u = O (7) , (136)
r
ou 1
=0 ik - -
3 ikoug o (r)
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Theorem 24

The solution to problem (134)—(136) is unique.

Proof.  Since problem (134)—(136) is linear, it is sufficient to prove that the corresponding homogeneous
problem (with fo = f1 = 0) has only a trivial solution. Together with ug and u1 consider the corresponding
complex conjugate functions ug and uj. They satisfy the same boundary and transmission conditions; however,
the condition at infinity takes the form

oug
or

+ikou = o (1) . (137)
r

Applying the second Green formula to «] and uj in domain €21, we obtain

8u’{ 8’[1,1
— doy, =0, 138
[ 5 =i 5t oy (138)

where v denotes the unit normal vector to the boundary ¥ directed into the exterior of 2. Let Si be a sphere
of sufficiently large radius R containing domain Q3. Applying the second Green formula to ug and uf in the
domain Qg situated between 27 and Sgi, we obtain

—uy— | dor —uy—— | doy, =0, 139
/E [uo [I%) Yo dvg o + Sn o or o or Iro (139)

where 00y denotes the directional derivative in the direction of the unit normal vector v to X directed into the
interior of 1 (external with respect to Q).
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Adding up (138) and (139) and taking into account the conjugation conditions on X, we have

ouf 0
/ {“0 Yo _ ug U0:| dov, = 0. (140)
Sk or or

Applying the condition at infinity and transferring to the limit R — oo in (140) we obtain

lim lug|?ds = 0, (141)
R— o0 Sk

Thus up = 0 outside sphere S according to Theorem 22. Applying the third Green formula (121) in Qg we

obtain that ug = 0 in 2g. Then applying the third Green formula in 1 we obtain that u; =0 in Q;.
Therefore, homogeneous problem (134)—(136) has only a trivial solution. The theorem is proved.
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Formulate a vector (electromagnetic) problem of the wave diffraction by a transparent body Q. Let Q1 be a
domain bounded by a piecewise smooth surface 3 and Q¢ = R3 \ Q1. The problem under consideration is
reduced to a BVP for the inhomogeneous system of Maxwell equations (69) and (70) with a piecewise constant
coefficient

rot HJ = —injEj + Jj, rot E_] = z'w,ujHj 7=0,1, (142)
with the transmission conditions stating the continuity of the tangential field components across interface ¥
[H1,v] = [Ho,v], [Bx,v] = [Eo,v), (143)
and the Silver—Miiller radiation conditions at infinity

lim T ([Ho,er] — ikoEo) = 07 k‘o = W+/€0M0, (144)
T o0

where v is the unit normal vector to 3, e, = r/r is the unit position vector of the points on S, and the limit
holds uniformly with respect to all directions (specified by e,). Note that in this case (142) can be written
equivalently (in every domain where the parameters are constant) as a one vector equation with respect to i.e.
E(r) by eliminating H(r):

rotrot Ej — w?e;u; Ej = J5, j=0, L. (145)
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Theorem 25

The solution to problem (142)—(144) is unique.

Proof. Since problem (142)—(144) is linear, it is sufficient to prove that the corresponding homogeneous
problem (with J; = 0) has only a trivial solution. Next, one has to apply Theorem 23 and perform the same
steps as in the proof of Theorem 24 using Lorentz lemma instead of the Green formulas.
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LECTURE 2: THE MATHEMATICAL NATURE OF WAVES.

Going back to the problems on normal waves we see that the form of solution in (85)

E (x) = (E1 (x')e1 + B2 (x') e2 + E5 (x') e3) €773,
H(x) = (Hy (x')e1 + Ha (x') ez + H3 (x') e3) e7%3, (146)
x' = (z1, 22),

with the dependence e?7*3 on longitudinal coordinate x3 specify a wave propagating in the positive direction of
x3-axis. Problems on normal waves (88)—(90) have nontrivial solutions if

B=e—~2=XP or E2=)Y, n=1,2,..., (147)

so that the eigenvalues of normal waves

We have 0 < /\ID’N < )\2D,N < ...; therefore, that are at most finitely many values of v2 and vX that are real,

while infinitely many of them are purely imaginary. Consequently, according to (146), there are at most finitely
many normal waves that propagate without attenuation (in the positive direction of z3z-axis) and infinitely many
decay exponentially.
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Propagation-of-electromagnetic waves along the waveguide is described by the homogeneous system of Maxwell
equations which-can be written in the form

rotH = —ikE, (149)
rotE = kH,

with the boundary conditions for the tangential electric field components on the perfectly conducting walls ¥ of
the waveguide

Bls =0, (150)
Look for particular solutions of (149) in the form
E graddivP + k°P, (151)
H = —ikrotP,

using the polarization potential P = [0, 0, II] that has only one nonzero component P3 = II. It is easy to see
that

Hs =0, E=[0,0,Es], H=][H,Hs,0], (152)
and this case is called TM-polarization or E-polarization Substituting (151) into (149) yields the equations
2 0211 2
AgIl+Ek“II = 0 or AH-%—W-i-k M=o, (153)
x3
02 02 9?
Bs = o5t astam
Ox{ Oxz  Ozxj
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Condition (150) is satisfied if we assume that
M|y, =0, (154)

because the third components of both P and E are actually tangential components that must vanish on the
waveguide wall and they are coupled by the first relation (151). (153) and (154) constitute the Dirichlet BVP
for the Helmholtz equation in the tube. We look for the solution to this problem in the form

H(X) = H(X’,Ig) = ¢(Xl)f(333): x' = (xly 552)7 w(x/)v f(lg) 7£ 0, (155)

using the separation of variables. Namely, substituting (155) into (153) and dividing by nonvanishing product
f1v we have

FAY+ f1p+ K2 =0 or %§+{%:—w, (156)
which yields
ﬂ_—x, LA (157)
P

with a certain constant \.
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Thus ¥ must solve the Dirichlet eigenvalue problem for the Laplace equation in cross-sectional domain Q2
Ap+Arp = 0, x €Q, (158)
Y =

Denote by A = {A\n} and ¥ = {4, } the system of eigenvalues and eigenfunctions of this problem. A particular
solution of (153) is

Il = I (%) = Y (X') fn(zs), (159)

where f;, satisfies the equation
14+ (k% = An)fn = 0. (160)

The general solution of (160) is
fn(z3) = A eiin®s Bnefm"m, Yn = \/m (161)

The first and the second terms in (161) correspond, respectively, to the wave propagating in the positive or
negative direction of the waveguide axis.
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Considering the wave propagating in the positive direction set
fn(23) = Apetrn®s, (162)
As a result we obtain the solution
In (X', 23) = Anthn (x')e" 173, (163)
We have 0 < A1 < X2 < ..., therefore, that are at most finitely many values of v, = VEZ = X with k2 > A\,
that are real, while infinitely many of them, for v, = iV — k2 (i2 = —1) with k2 < Ap, are purely imaginary.

Consequently, there are at most finitely many waves in the waveguide that propagate without attenuation (in
the positive direction of z3-axis) and infinitely many decay exponentially.
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Looking foiriﬁéir]:ijcrular solutions of (149) in the form

H = graddivP + kP,

(164)
E = ikrotP,
where the polarization potential P = [0, 0,II] has only one nonzero component P3 = II, it is easy to see that

E3=0, H=[0,0,H;3], E=[E1,E»,0],

(165)
and this case is called TE-polarization or H-polarization. Substituting (164) into (149) yields the equations
2 911 2
AT+ KT = 0 or All4 -y +A1=0, (166)
T3
2 2 2
Ay = 0 1o} 1%}

o Vot om
Condition (150) is satisfied if we assume that

om
on |s

=0, (167)

because the third components of P and the first two of E are tangential components that must vanish on the
waveguide wall and they are coupled by the first relation (164).
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Repeating the above analysis we see that
I =T, (x) = Apthp (x' )13, (168)

where 1), solves the Neumann eigenvalue problem for the Laplace equation in cross-sectional domain €2

AYy+Xxp = 0, x €9, (169)
ol
on |s '

(168) specifies the wave propagating in the positive direction of the waveguide axis. Denote by A = {\H}
and U = {H} the system of eigenvalues and eigenfunctions of this problem. We have 0 < )\{{ < )\51 <...
therefore, that are at most finitely many values of v2 = \/k2 — M\ with k2 > A that are real, while infinitely
many of them, for v = i/ — k2 with k2 < )\ff are purely imaginary. Consequently, there are at most
finitely many waves in the waveguide that propagate without attenuation (in the positive direction of x3-axis)
and infinitely many decay exponentially.

The waves obtained from (151), (152) or (164), (165) are called, respectively, TM-waves or TE-waves.
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electric and magnetic field, E(r,t) and H(r, t), respectively, where r = (z,y, z), and consider the problem of
diffraction of a TM wave (or mode)

E(r,t) = E(r) exp (—iwt), H(r,t) = H(r) exp (—iwt), (170)
(0 1 0B, 1 aEz)

E(I‘) = (Ex’oyo)z H(I‘) = s who 92 B who 8y

(171)

by a dielectric inclusion D in a parallel-plane waveguide W ={r: 0 <y <7, —o00o < z,z < 00}.

R
T
TE mode L
Sy | D ~ s >
o -2 70 X ) 27mo -
k\\\g_ /’/
(@}
- =

Figure .1: TE-mode diffraction by a dielectric inclusion in a parallel-plane waveguide
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The total field u(y, 2) = Eg (y, 2) = Ei"¢ (y, 2) + E5°%t (y, 2) = u'(y, 2) + u®(y, 2) of the diffraction by the D
of the unit-magnitude TE wave with the only nonzero component is the solution to the BVP

[A+ kK% (y,2)]u(y,2) =0in S ={(y,2): 0<y<m, —00<2z<o0}, u(xmz)=0, (172)
. o0
u(y,z) = u'(y,2) +u'(y,2), u’(y,2) = ) ai exp(il'nz)sin(ny), (173)
n=1
2 2
where A = ) + 92 is the Laplace operator, superscripts T and ~ correspond, respectively, to the domains
y z

z > 2md and z < —2m6, w = kc is the dimensionless circular frequency, kK = w/c = 27/ is the dimensionless
frequency parameter (A is the free-space wavelength), ¢ = (eo uo)*l/2 is the speed of light in vacuum, and
I = (k2 —n2)1/2 is the transverse wavenumber satisfying the conditions

ImT, >0, D, =il Tnl= ImDp, =m2—k?Y2 n>k (174)

It is also assumed that the series in (173) converges absolutely and uniformly and allows for double
differentiation with respect to y and z.

Note that u®(y, 2) satisfies (172) in S, the boundary condition, and radiation condition (173) only in the
positive direction, so that the electromagnetic field with the z-component u?(y, z) may be interpreted as a
normal wave (a waveguide mode) coming from the domain z < —274.
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Diffraction from a dielectric obstacle in a 3D-guide. Diffraction of electromagnetic waves by a dielectric body
Q in a 3D tube (a waveguide) with cross section 2 (a 2D domain bounded by smooth curve I") parallel to the
x3-axis in the cartesian coordinate system is described by the solution to the inhomogeneous system of Maxwell
equations

rotH = —iwéE + j9
B (175)

rotE = iwuoH,
E-lpp =0, H,|pp =0, (176)

admitting for |x3| > C and sufficiently large C' > 0 the representations (+ corresponds to +oco and — to —o0)

(1) (1)
E (1) Ap 'IT - 11
(H> - ZR,(,i)e—wpl \-ral( p—mpe?)v ZH% Va p)
» 60( 2 p) X e3
(+) —iy @5 twpe(VaWp) X e
D Qe 3|<>\(2)\p es — iy Vo0 ) a77)
P p ¥p€3 —1UYp  V2¥p
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Here, yfj) = \/kg — )\g,j), Im'yz(,j) <0or Imwlgj) =0, kg'yl(,ﬂ >0, and )\;1), I, (z1,z2) and )\512), Wy (z1,z2)

(k% = w?eppp) are the complete system of eigenvalues and orthogonal and normalized in L2 (IT) eigenfunctions
of the two-dimensional Laplace operator —A in the rectangle I, = {(z1,22) : 0 < z1 < a, 0 < x2 < b} with
the Dirichlet and the Neumann conditions, respectively; and Va = e1 8/0x1 + e2 0/0z2.

We assume that EC and H? are solutions of BVP under consideration in the absence of body Q,

é(x) = eol, x € P (I is the identity tensor):

rotH? = —iwegE? + j9
0F T IE (178)

rotE? = iwpoHO,
Elpp =0, HY|pp =0. (179)

These solutions can be expressed in an analytical form in terms oijE using Green's tensor of domain P. These
solutions should not satisfy the conditions at infinity (177). For example, E® and H® can be TM- or TE-mode

of this waveguide.
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The potential theory developed for the Laplace equation can be extended to the Helmholtz equation
L(c)u:=(A+c)u=0. (180)

In order to construct fundamental solutions consider, in spherical coordinates, a solution vg = vg(r) depending
only on r; the Laplace operator has the form

1 d dvg 1 d?(rvo)
Avg= = — (r2=—=) == 181
T2y (r dr ) rodr2 (181)

which yields an ordinary differential equation

((112712” +cw=0, w=wvor. (182)

Its linearly independent solutions are
ei:T, ejkr (c = k2>0), (183)
e;m, ? (c = —k2<0). (184)
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The fundamental solution

eflk'r

$o(r) =

corresponds to an outgoing spherical wave

i(wt—kr)
up(r) = =

propagating off a source placed in the origin 7 = 0 where ¢o(r) has a singularity ~ % .

Another solution

eikr
vo(r) =
corresponds to an incoming spherical wave
et(wt+kr)
up(r) = ————
r

propagating from a source at infinity. This solution is ignored because it has no direct physical sense.
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Using notation (180) we can write the second Green formula for the Helmholtz operator £ and a domain T
bounded by a piecewise smooth surface

/ [ulv —vLuldr = / (u@ — v%) do. (189)
T = ov ov

Substituting instead of v a fundamental solution to the Helmholtz equation in the case of three dimensions and
repeating literally the proof applied for obtaining an integral representation for a solution to the Poisson

equation Au = —f (the third Green formula), we arrive at the integral representation of solution to the
inhomogeneous Helmholtz equation £(k?)u = —f
1 e~ kR gy, o e~ kR kR
= — — —u— d — ——dTry, 190
u(r) ar z{ R ov “ay( R )] 7oty /f(ro ro (190)
R = |r—ro|= \/(x—xo)2+(y—y0)2+(z—zo)z.

One can show that the volume potentials

1 e—sz
= — drrg, = 191
) = 1 [ 700 G, ) = - (101)
satisfies the inhomogeneous Helmholtz equation E(kQ)u = —f. However, both these functions decay at infinity.

This fact dictates the necessity to introduce additional conditions specifying the behavior of solutions to the
Helmholtz equation at infinity which would enable one to uniquely determine the solution.
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Formulate the interior Dirichlet problem for the Helmholtz equation: find a function u continuous in D = DUT
that satisfies the Helmholtz equation in a domain D bounded by the closed smooth contour I,

LD u=Au+ku=0 in D, (192)

and the Dirichlet boundary condition
ulp =~ f. (193)

where f is a given continuous function. ~
Formulate the interior Neumann problem: find a function u continuously differentiable in D = D UT that
satisfies the Helmholtz equation (192) in domain D bounded by the closed smooth contour I" and the Neumann
boundary condition

ou

= = - 194

onl. = (194)
where % denotes the directional derivative in the direction of unit normal vector n to the boundary I' directed
into the exterior of I and g is a given continuous function.
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Let us also formulate Dirichlet and Neumann boundary eigenvalue problems for the Laplace equation: find a
nontrivial solution u € C(D) or, respectively, u € C'(D) to the homogeneous Dirichlet or Neumann BVPs

—Au=XMu in D, ulp=0, (195)
or 5
“Au=Xu in D, Y| =o, (196)
on |p

that correspond to certain (in general complex) values X called eigenvalues.

It is known that eigenvalues of the Dirichlet and Neumann boundary eigenvalue problems for the Laplace
equation in a domain D form the sets Apj, New = {/\E’N};’f’:l of isolated real numbers AE’N with the
accumulation point at infinity; also, 0 ¢ Ap;, and 0 € Aney. The complements ppir. New = C\ ADir, Neu:
where C denotes the complex A-plane, are called resolvent (regular) sets of the Dirichlet or Neumann BVPs for

the Laplace equation in D.
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According to the definition, the (interior) Dirichlet or Neumann BVPs (192), (193) or (192), (194) for the
Helmholtz equation in D have at most one solution if A is not an eigenvalue; that is, if A € pp;(D) or
A € pNew(D) is a regular value.

Theorem 26

Let D € R? be a domain bounded by the closed smooth contour T'. The double layer potential

v(r):/aa E(r —r0)p(ro)dlr, (197)

Nro

with a continuous density ¢ is a solution of the interior Dirichlet problem (192), (193) provided that
A € ppir(D) is a regular value and ¢ is a solution of the integral equation

o(r) — Q/Mcp(ro)dlro = _2f(r), rel. (198)
T

Onrg
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Theorem 27

Let D € R? be a domain bounded by the closed smooth contour T'. The single layer potential

ur) = [ B = ro)b(ro)ding (199)
r

with a continuous density 1 is a solution of the interior Nuemann problem (192), (194) provided that
A € pNew(D) is a regular value and 1) is a solution of the integral equation

W(r) + 2/wip(ro)dlro =2¢(r), rel. (200)
T
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Piecewise linear elements. An n-dimensional vector

a=la1,az,...,an]
is defined as an element of an n-dimensional space R™ and is an ordered set of n components a1, az2,...,an.
The n vectors
i» =1[1,0,0,...,0], i2=10,1,0,...,0], ..., in=][0,...,0,1]. (201)
form an (orthonormal) basis in R™. Each vector a = a = [a1, a2, ...,an] ER™ can be written as a linear
combination of the basis vectors,
a=aii1 + agiz + ..., +anin. (202)

To introduce the piecewise linear finite elements, divide interval [0,1] in M (smaller) intervals K; = [z;_1,x;],
j=1,2,...,M (M > 2), with the points

o =0<z1 <22 < - <ap-—1<zp =1

(in general, nonuniformly distributed with different distances between them h; = z; —z;_1,j =1,2,..., M).
The corresponding (M + 1)-dimensional vector

XM = [zo, 21,22, ..., TM—1, TM] (203)

is called partition of the base interval [0, 1].
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Note that for-the_points ;- uniformly distributed with the distance h = —,
- n

zj = gjh, j=0,1...,M,
z9 = O0<zi=h<az2=2h<---<zpy_1=M-1h<zpyy=Mh=1.
The corresponding partition
XM =[0,h,2h,...,(M —1)h,1] = h[0,1,2,...,M — 1, M].
The piecewise linear elements are defined as

0 o <z <wj1,

T—Tj_1

® _ > zj—1 <z <y, )
i@ =91 1o o J
th zj < xS Tjqa,

1,2...M —1,

0 Tit1 <x < xpp,
hj=xzj—x;_1, j=1,2...,M.

Each ®;(x) is a piecewise linear 'rectangular’ function such that

I i=y, o
D;i(x;) = , 4, =1,2...M —1,
0 i#j;
it does not equal 0 in each subinterval [z;_1,zj41] = K; UK 11,5 =1,2,...,M — 1 (see Fig. .2).
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Figure .2: The piecewise linear elements.

Assume that Xy = [0, @1, %2,...,Zpm—1, 2] is a given partition of [0, 1] into M subinterval K = [z;_1, z;],
j=1,2,...,M (M > 2). Define the (M — 1)-dimensional space S}, = S}, (Xm) of piecewise linear functions

Sp = {v € S : v a linear in each subinterval K, v(0) = v(1) =0, h = max h;}. (208)
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Theorem 28

The set {®;(x)} of piecewise linear elements is a basis in space Sy,; i.e., any piecewise linear function can be
written as a linear combination of ®;(x).

Proof. A piecewise linear function F' = F(M;z) defined on the interval [0, 1] is a linear function on each
subinterval K = [z;_1,z;], j = 1,2,..., M. This function vanishes on the endpoints of interval [0, 1] so, that
F(M,0) = F(M,1) =0 and has M — 1 vertices and its derivative is undefined in these points.

Thus the function F = F(M;x) is composed of M piecewise linear functions F}(x),

F(M;z) = Fj(z), ze€Kj, j=12... M, (209)

Function F' = F(M;x) € Sy, has values T} in nodes z;, j = 1,2,..., M — 1 (i.e., the function goes through the
points (zj,T};), j =0,1,2,..., M) and for endpoints of the interval is defined as F'(M,0) := Ty =0, and
F(M,1) := Ty =0, respectively. Thus any subfunction F;(x) goes through the points (z;_1,T;_1), (z;,T}),
and uniquely determined on each subinterval K; = [z;_1,x;] (as a linear function) by

Fj(xj_1) =Tj—1, Fj(z;) =T}, (210)

We obtain that any piecewise linear function F' = F(M;x) € Sp, which has values T} in the nodes z; is
uniquely determined on the interval [0, 1] under the conditions

Fij(z;)=T;, j=0,1,2,...,M, To=Ty =0. (211)

114 /143



LECTURE 2: INTRODUCTION TO THE FINITE ELEMENT METHODS.

zj,7=0,1,2,..., M, with Ty = Ty = 0 is a linear combination of piecewise linear base elements ®; (z). A

linear combination of ®;(x) is

M—-1

Flz) =Y Ti®(x).
=1

F(z) is a piecewise linear function (as a sum of piecewise linear functions) and

- M-1
F(zj) = > Tidi(x;) =Ty

=1

M—-1 M—-1

F(zo) = Y Ti®i(z0) =0, F(zam)= Y Ti®i(zo) =0,
= i=1

according to (207), so

M—-1

F(z) =Y Ti®i(x) = F(M;z) € Sh.
=1
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Consider-a (M-=T)-dimensional space S}, = (Xm) of piecewise linear functions. The minimal value of
parameter M = 2 gives us two subintervals K1 = [zo,21] and K2 = [x1, z2]; Then the corresponding partition

X2 = [zo,z1,z2] = [0, 21, 1] (216)

is a 3-dimensional vector. For this partition, we can define only piecewise linear 'triangular’ elements ®1(z) by
formula (206) for j =1

T—x0 _ & _ T _
1 (z) = e = hi T n3 0=zp <z <,
_ 1— 1—
Bt =Srt=1 m<z<az=l,
hi=z1—x29==1, ho=20—21=1—121, (217)
which satisfies (according to (207))
Q1(z1) =1, Pi(z0) = P1(0) =0, P1(x2)=P1(1) =0, (218)

and not equal to 0 on the whole interval [zo; z2] = K1 U K2 = [0,1]. In this case M = 2 and the basic element
®1(x) (217) is an element of one-dimensional space Sj, = (x2) which consists of one piecewise linear
‘triangular’ functions v(z) := C®;(x) with an arbitrary C:

Sp = Sh(Xz) = {C@1(:L‘) vC e R},
v(z) € Sp(X2): v(z1) =C, wv(zo) =v(0) =0, v(z2)=1v(1)=0. (219)
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In-the same-way one-can-show that in the case M > 2, the (M — 1)-dimensional space Sy = Sp,(Xnm)
consisting of piecewise linear functions which take values T in nodes x;, j = 1,2,..., M — 1 and vanishes in
nodes g = 0 and ;s = 1 (and can be written as (212)),
M—1
Sp = SL(XMm) = { Y Ti®i(z), VTm = [Tl,Tg,...,TMl]}. (220)
i=1

We can determine piecewise linear base elements ®;(z) € Sp, (X ) with the base vectors (201) and a piecewise
linear function F' = F(M;z) € Sp,(Xm) which takes values T, To = Ty = 0, in nodes zj,
j=0,1,2,...,M — 1, M. The (M — 1)-dimensional vector of the values is

Ty = [T1, T2, ., Tar—1] (221)

The set C§(Io) denotes a set of continuously differentiable in the closed interval Iy = [0, 1] functions f(z)
which satisfy the following boundary conditions

f(z) € C(lo) = (0)=0, f(1)=0. (222)
A projection Pps(f) of a function f(z) € C}(Io) in the (M — 1)-dimensional space Sj, = S, (Xm) of piecewise
linear functions with respect to a given partition (203) Xng = [z0, 21, ..., 2] (M > 2) is defined as (212)
M—1
Py(f) = D flzi)®i(o). (223)
i=1

We can determine the projection Pps(f) as a (M — 1)-dimensional vector
Pam = [f1, fao- s fu—al, fi = ). (224)
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Consider a BVP for a linear differential equation of the second order

Ay = —(ay’) +q(x)y = f(z), =z¢€lo=(0,1),
y(0) =0, y(1) =0,

where a(z), q(z) and f(x) are smooth functions satisfying the following conditions

a(x) >ag >0, g(z)>0.
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The Variation formulation of BVP (225), or weak formulation, is given by

where
1
o) = [ la@ys +a@yEo)d (227)
1
(f,9) = : f(@)¢(z)dz. (228)
Divide an interval [0, 1] into M subintervals K; = [z;_1,z;] j = 1,2,..., M. The corresponding partition
XM = [0, %1, xm—1,2pm] (M > 2). To implement the numerical method for solving BVP (225), written

in the weak form as integral equation (226), we replace functions a(x), y(z), q(x) and f(z), for x € I = [0, 1],
with their projections in the (M — 1)-dimensional space S;, = S, (Xn1) by piecewise linear functions with
respect to a given partition Xy = [20, 21, ..., Zp—1, Zar] (M > 2) and (226) with a finite-dimensional
approximation based on piecewise linear finite element (206).

119 /143



LECTURE 2: INTRODUCTION TO THE FINITE ELEMENT METHODS.

Finite-dimensional approximation. Formulate a finite-dimensional problem which approximates BVP (225) or
(226): find uj, € Sp(xm) such that

a(un, ) = (f,6n) Yé € Sp(Xm)- (229)
Here uy, is given by
M-1
up =y Uj;(x); (230)
j=1

it can be considered as the projection (223)

g

-1
Par(u) = u(wi) i (z) (231)

i=1

of the unknown solution u(z) € C&(Ip) of BVP (225) in (M — 1)-dimensional space Sy, = Sj, (XM ) of
piecewise linear functions with respect to partition (203)

XM = [0, 21, 2p—1,20] (M > 2).
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M—1
D Uia(®)(x), @i(x)) = (f,®i), i=1,2,...,M—1. (232)
=1
or in the matrix form
AUy = f, (233)
where vector f = [f1, f2,..., far—1] the load vector,
ail a2 a1, M—1
a21 a2z a2, M—1
A= [ai;] = ;
ap-11 aM-1,2 --- QGM-—1,M-1
or
a(®1,P1) a(®1, P2) a(®1,P3) a(®P1,Prr—1)
a(P2,P1) a(P2, P2) a(P2, P3) a(P2,Prr—1)
A= a(<1>3,<1>1) a(<1>3,<1>2) a(<I>3,<I>3) a(‘bg,q)M,l) (234)
a(®pr—1,®1) a(®Pp_1,P2) a(®Pp_1,P3) ... a(Pr—1,Prm-1)

is a stiffness matrix. The size (dimension) of matrix A is equal to (M — 1) x (M — 1) and it is a symmetric
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Note that function ®;(x) vanishes at the endpoints of the interval. The elements of the stiffness matrix A of
the BVP is determined by

1
a(®;(z), ®i(x))) = a(®i(z), ®;(z))) = /O (@72 + q() @i ()@ (x)¢(x)]dx (235)

Some expressions ®;®; and @;@9 vanish, e.g.

1
(®j(2), Pi(2)) = (Pi(x), ®;(x)) =/O ®;(2)0i(z)de =0, |i—jl>2(,j=1,2,....,M—1). (236)

122143



LECTURE 2: INTRODUCTION TO THE FINITE ELEMENT METHODS.

co 0 o o0 --- 0 O 0 0
a —-b a 0 --- 0 O 0 0
0 a —-b a --- 0 O 0 0
A=|on (237)
0 0 0 o0 a —b a 0
0 0 0 0 a —b a
L 0 O 0 0 0 0 cn |
with elements
aij =0, li—jl>2 (45=12,...,M—1); (238)
namely
a1 a2 0 0 -+ 0 0 0 0
a1 a2 a3 0 - 0 0 0 0
A=l 5 5 (239
0 0 0 0 -+ 0 am-—2,M-3 aM-2M-2 OM-2,M-1
0 0 o 0 --- 0 0 apM—1,M—-2 GM-—1,M—1

123 /143



LECTURE 2: INTRODUCTION TO THE FINITE ELEMENT METHODS.

If ¢ = const, we get
1
a(®;(x), ®i(x)) = a(®i(x),®;(x)) = /0 [<I>2<I>3- +q® ()P (x)p(x)]de =
= (9}, ®}) + q(Pi, D)
and we can rewrite stiffness matrix A (234) as a matrix sum

A=Q1+Qo, Q1 =[(®,®)], Qo=q[(®:®;)].
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Consider-an-important case of the uniform partition (204) when points z; = jh, 7 =0,1..., M, are distributed

. . 1 . L .
uniformly with the step h = i and piecewise linear base elements are determined as

0 ro <z <xj_1,
1= xi1 <x<x;
®,(z) = h / =12, M1 (242)
J Tjp1—w ’
“H5— =z <z <wjqa,
0 zj+1 Sz <xpNp,

The expressions (®;(x), ®;(x)) =0, |i — j| > 2 vanish according to (236). Nonzero elements are

Tj 1 Ti+1 1 2
(@, ) = / —d:r:+/ de =2, (243)
J =3 - h2 o h2 h
o1 /01 1
@, @) = / 1 (_7) do = -2, (244)
g g o, B\ h
2 (x—xj_1)> i+l (241 — )2 2h
(®;,®,;) = / 7jdm+/ e = —, (245)
o1 h2 o R2 3
i (z—xj-1) (xj; —x) h
@2 = | e (246)
Tj_1

(4,4 =1,2,...,M—1).
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and

Qo = [(®:,®,) = a1

0 0
-1 0
0 0
0 0
1 0 O
4 1 0
0 0 O
0 0 O
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If ¢ =0, then-the stiffness matrix A coincides with matrix Q1. The finite-dimensional problem (225)
approximates the following BVP

-y’ = , € Ilp=(0,1),
y" = f(x) zelp=(0,1) (249)
y(0) =0, y(1)=0,
or
AUy = f,
where
2 —1 0 0
. 11 2 -1 -0
A=Q1= [(q)iv':bj)] = E : : : : (250)
0 0 -1 2

which coincides with the system obtained for BVP (249)

1

Y —q(@)y = f(z), di <z <dy,
y(d1) = fo, y(d2) = fn. (251)
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The forward-and backward differences are determined as

Ayl.:y“:w7 Vyl.:yii:w (252)
’ h ’ h
and
Yi+1 — 2Yi +yi—1
Y X Yo =Yg = o2t TR h; = (253)
—Yit1 +2Yi —Yi-1
' N —Yre = Yo = — T —
and
—Yzzi = fi, 1=1,2,...,N =1, yo =0, yn =0,
or
v = 0
%(—%-1 +2y; —yit1) = hfi, 1<i<N-1, (254)
yn = 0.

(254) is a system of linear equations.
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Approximate solution. Let U = [Uy,...,Up;_1] denote the solution of the linear system (233). The
approximate solution of BVP (225) is defined as a solution of corresponding finite-dimensional problem (225)

M-1
up(z) = Y Uj®;() (255)
j=1

The approximate solution uy, is an element of (M — 1)-dimensional space Sp, = Sp,(Xm) of piecewise linear
functions with respect to partition (203) Xng = [zo, z1, ..., zpm—1, za] (M > 2).
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Error-estimate The error-r = r(h) of the approximate solution of BVP (225) can be defined as

1
r(h) = llun — vl = /0 fun (z) — y(@)]2, (256)

where y(z) represents the exact solution of BVP (225) and h is the maximum length between adjacent nodes.
The error can be calculated approximately as the Euclidean norm

r(h) = ||lUm — Ymll2 = (257)
i.e., length of the discrepancy vector Unt — Y, where Yo = [y1, ..., yar—1] with y; = y(x;),
Jj=1,2,... M — 1, is the projection (231) Pps(y) = Eg;l y(zi)®;i(z) of the sought for solution
y(z) € Cg(To).
One can also determine the error approximately with the help of the maximum norm

r(h) U = Ymlle = | _max  |Uj -yl (258)
One can show that the following estimates hold to the relative error

Huh - yHQ < Ch2 (259)
llyll2

with some constant C. This means that one can solve approximately the BVP using the finite element method
with sufficiently small step h.
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Example 12

Solve the BVP

—y' +4y=2, O0<z<]1,
{ v (260)

y(0) =0, y(1)=0

with the help of the finite element method (uniform partition) by reducing it to a system of linear equations
with three unknowns. Calculate the approximate solution wy, and determine the (approximate) error ||up — y||
where y(z) is an exact solution of (260).

Solution. The weak formulation of BVP(260) is

a(y,¢) = (f,¢) Vo € Ch(Io), (261)

1 1 1
a(y, ) = /0 W' + 4y(@)p@)de = /0 Y ¢ de + 4 /O Y@@ = (o, ¢) + 4(y,d), (262)

1
(f,6) =2 /0 6(2)da. (263)
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The finite-dimensional problem, which approximates BVP (260) or equal weak problem (261), is reduced to a
system of linear equations with M — 1 = 3 unknowns Uy, Uz, U3 and three equations. In the case M =4 we
obtain four subintervals

Ki = |[zo,z1] =[0,h], K2 =[z1,z2] = [h,2h],
Ks = |[z2,z3] =[2h,3h], K4 = |z3,z4] = [3h,4h] = [3h,1] (264)

with uniform partition
X4 = [z, z1, %2, 3, x4] = [0, 21, T2, T3, 1] = [0, h, 2R, 3h,4h] = h[0,1,2,3,4], h = 0.25. (265)

For this partition, we can define a piecewise linear base element ® () according to (206) with j = 1,2,3. The
linear system of equation AU = f with three unknowns approximates BVP (260).
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The tridiagonal-stiffness matrix A has a size 3 X 3. We have ¢ = const = 4; the stiffness matrix A is a sum of

symmetric tridiagonal matrices

2 -1 0 8 —4 0
3 1
Qu=[@,eN);, =+ -1 2 -1 |=| -4 8 -4/, (266)
0 -1 2 0 -4 8
4 1 0 2/3 1/6 0
h
Qo=[(¢¢,<1>j)]=4€ 1 4 1 |=]|1/6 2/3 1/6 |, (267)
0 1 4 0 1/6 2/3

and

a1 a2 O
A = a1 ag2 a3 | = [(4’2,@3) +4(‘I’i7‘1)j)] =Q1+Qo=

0 as2 as3

8 —4 0 2/3 1/6 0 26/3 —23/6 0 52 —23 0
1
= —4 8 4 |+|1/6 2/3 1/6 |=| -23/6 26/3 -23/6 |=c| -23 52 23
0 -4 8 0 1/6 2/3 0  —23/6 26/3 0 -23 52
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The right side of system is determined as (263)

1 Tit1
D;(x)dx = 2/ P;(z)de =2h =05, i=1,2,3.

Ti—1

fi= (. 9;) = 2/01 ;i (v)de = 2/

0

Now we can write the linear system (??) AU = f with three unknowns which approximates (260)

52U, — 23U2 = 3,
—23Uy +52U02 — 23U = 3 (268)
—23U2 +52U3 = 3

(we multiply both sides by 6).
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Solve this system-using-the Gaussian elimination:

s 23U; — (232/52)U> =  3(23/52),
—23U; 4+ 52U, — 23Us = 3
—23Us + 52U3 = 3
23U, — (23%/52)U, = 3(23/52),
(52 — (23%/52))Uy — 23Us = 3(1 + (23/52))
—23U, +52Us = 3
23U, — (23%/52)U;, = 3(23/52),
23U, — 23%/(52 — (237/52))Us = 3-23(1 + (23/52))/(52 — (232 /52))
—23U; +52Us = 3
23U, — (23%/52)U; = 3(23/52),

23U, — 23% /(52 — (23%/52))Us
(52 — 232 /(52 — (23%/52)))Us

The solution of system (268) is

= 3.23(14 (23/52))/(52 — (23%/52))
= 3+43-23(1+ (23/52))/(52 — (23%/52))

225

— = 0.137
1646
294
—— =0.179
1646
225
= —— =0.137
1646
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The error is approximately calculated using the Euclidean norm (257)

3
r(h) ~ |[Un — Ymllz = | D (U —5)2. (269)
=1

The exact solution of (260) is

1
y(x) = Ae®® 4 Be 2 4 3 (270)

11—e2

A = ——°% = _0.060,
2e 2 —¢2
1 e2-1

B = ———— = —0.440. 271
2e72—¢2 (271)

Projection (223) Py (f) = ?:1 y(zi)®i(z) can be identified with 3-dimensional vector (224)
Yum = [y1,y2,v3]
i ) ) 1
yi = ylz;) =y(h) =y (i) = Ae"/? + Be /2 4 3 1=1,2,3.
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We have

y1 = 0.5—0.06e*/2 —0.44e71/2 = 0.133,

y2 = 0.5—0.06e —0.44e~! = 0.175,

y1 = 0.5—0.06e%2—0.44e"3/2 = 0.133.
The target error

3
r(h) ~ ||[Um—Yumlla=,|D> (U;—y;)? =
=1

= \/(0.137 —0.133)2 4 (0.179 — 0.175)2 4 (0.137 — 0.133)2 =

= V3.0.0042 = V12-10-6 = 3.464 - 103 ~ 0.003.
The error can also be determined approximately with the help of the maximum norm (258)

r(h) = ||Um — Ymlle = 1??%(3 |U; — y;| = 0.004.
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

d
Problem 1 Find derivative di: of the function w = /2 + y2 where z = e*! and y = e~ *.
Problem 2 Find grad f of the function f(z,y) = 2 — y2 and its value and length at the point P : (—1,3).

Problem 3 Find the gradient —grad f for f(z,y,2) = 2/(x? + y?) and its value at the point P : (0, 1,2).
Problem 4 Determine the divergence of
v(z,y,z) = vi(x,y, 2)i+ va(x, y, 2)j + v3(z,y, 2)k = 22i + y%j + 2°k.
Problem 5 Find curl of the vector field
v = %(I2 +2 4+ 2+ j+k).
Problem 6 Determine a normal vector and unit normal vector to the zy-plane
r(u,v) = [u,v] = ui + vj

and parametric form of curves u = const and v = const.
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 7 Prove that the function (8)

1 1

P(xy)=2kx-y)= glnﬂ

(the fundamental solution of the Laplace equation) is harmonic with respect to the coordinates of x for a fixed
vy € R2, y # x and with respect to y for a fixed x € R?, x # y.

Problem 8 Reduce to a boundary integral equation the BVP in a rectangle

Mgy ={(z,y): 0<z<a,0<y<b}

Au =0, u=u(z,y), 0<z<a, 0<y<b, u € C%(Tgp) NC(Tap)
u(0,y) =0, u(a,y) =0, 0<y<b,
u(z,0) =0, u(z,b) = H(z), 0<z<a,
2 _ 212 —7‘(rc—acs)2 _ <
Hz) = QP? — (x —=zs)?]%e sz —as| <p, (274)
0) |I_IS| ZP:

with supp H(z) = L = (x5 — p,xs +p) C (0,a).
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 9 Let

E =graddivP + k?P, H = —ikrotP, P =[0,0,1I].
Problem 10 Apply separation of variables and find eigenvalues )\7? and eigenfunctions of the Dirichlet boundary
eigenvalue problem (195) for the Laplace equation in a rectangle II,; (see problem 8). Determine normalized
eigenfunctions with respect to the norm generated by the inner product (f,g) = / fgdxdy in the space

My
L>(I1,p) of square-integrable functions.
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Miniproject: example of inverse problem Prove that in the BVP in a rectangle
Mg, ={(z,y): 0<z<a,0<y<b}

—Au = F(z,y), u=u(z,y), 0<z<a, 0<y<b, u € C?(Igp) N C(Tlgp)

u(0,y) =0, u(a,y) =0, 0<y<b,
u(z,0) =0, u(z,b) =0, 0<z<a,
o[ Ao e (- 8] b e )]s ) e

(275)
0, (z,y) & I, hy(T0,y0),

with  supp F'(z,y) = Ip, ny (T0,90) C gy,

ha

h1 hl
Mhy by (20, 90) = {(I,y)i To— o <T <@+ o5 Yo -

<y<yo+2
B Y < Yo D) .

it is possible, under certain conditions, to uniquely determine any of the five parameters A, xo, yo, h1, ho
provided that the remaining four are given from the knowledge of one Fourier coefficient
u1 = u1 (A, z0,Yo, h1, h2) of u(z,y).
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 11 Determine explicit expressions for TM-waves in a waveguide of rectangular cross section

Mgy = {(z1,22) : 0< 21 < a, 0<z2 < b}

Problem 12 The normal wave propagating along x3-axis in a waveguide with cross section 2 that corresponds to
the first (minimal) eigenvalue A1 of the Dirichlet boundary eigenvalue problem for the Laplace equation in Q is
often called the fundamental TM mode of the waveguide. Determine an explicit expression for the fundamental
TM mode in a waveguide of rectangular cross section Q =11, = {(z1,22) : 0 < z1 < a, 0 < z2 < b}.
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