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LECTURE 1
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Definition of the gradient. Vector function

grad f = ∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

is called a gradient of (scalar) function f(x, y, z).
Vector differential operator ∇ is defined by

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k.

Directional derivative. The directional derivative Dbf or
df

ds
of a function f at a point P in the direction of a

vector b, |b| = 1, is defined by

Dbf = lim
s→0

f(Q)− f(P )

s
(s = |Q− P |),

where Q is a variable point on the straight line C in the direction of b.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

In the Cartesian xyz-coordinates straight line C in parametric form is given by

r(s) = x(s)i + y(s)j + z(s)k = p0 + sb

where b is a unit vector and p0 the position vector of P . Applying the definition it is easy to check, using the

chain rule, that Dbf =
df

ds
is the derivative of the function f(x(s), y(s), z(s)) with respect to s

Dbf =
df

ds
=
∂f

∂x
x′ +

∂f

∂y
y′ +

∂f

∂z
z′,

x′ =
dx

ds
, y′ =

dy

ds
, z′ =

dz

ds
.

Differentiation gives
r′(s) = x′i + y′j + z′k = b,

that is

Dbf =
df

ds
= b · grad f

(b is a unit vector, |b| = 1), or

Daf =
df

ds
=

1

|a|
a · grad f

where a 6= 0 is a vector of any length).
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 1

Find the directional derivative of

f(x, y, z) = 2x2 + 3y2

at P : (2, 1) in the direction of a = i = [1, 0].

Solution.

f(x, y) = 2x2 + 3y2;
∂f

∂x
= 4x,

∂f

∂y
= 6y,

grad f = 4xi + 6yj.

At the point P : (2, 1)

grad f = 8i + 6j = [8, 6].

Since |a| = |[1, 0]| = 1, we obtain

Daf =
df

ds
= i·(8i+6j) = [1, 0]·[8, 6] = 1·8+0·6 = 8.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Theorem 1
grad f points in the direction of the maximum increase of f .

Proof. From the definition of the scalar product we have

Dbf = b · grad f = |b||grad f | cos γ = |grad f | cos γ (|b| = 1).

where γ is the angle between b and grad f . Directional derivative Dbf is maximum or minimum when
cos γ = 1, γ = 0, or, respectively cos γ = −1, γ = π, that is if b is parallel to grad f or, respectively −grad f .
Thus, the following statement holds.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Theorem 2
Let f(x, y, z) = f(P ) be a differentiable function. Then directional derivative Dbf is
(i) maximal in the direction

b =
grad f

|grad f |
and has the form

Dbf = |grad f |;

(ii) minimal in the direction

b = −
grad f

|grad f |
and has the form

Dbf = −|grad f |.

(grad f 6= 0).
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Surface normal vector. Let S be a surface represented by

f(x, y, z) = c = const,

where f is a differentiable function.

Theorem 3
If f(x, y, z) ∈C1) is a differentiable function and grad f 6= 0 then grad f is a surface normal vector to the
surface f(x, y, z) = C.

Proof. Let C be a curve on S through a point P of S. As a curve in space, C has a representation

r(t) = v(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k.

If C lies on surface S, the components of r(t) must satisfy f(x, y, z) = C, that is,

f(x(t), y(t), z(t)) = c.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

A tangent vector to C is
r′(t) = x′(t)i + y′(t)j + z′(t)k;

the tangent vectors of all curves on S passing through P will generally form a plane called the tangent plane of
S at P . The normal to this plane (a straight line through P perpendicular to the tangent plane) is called the
surface normal to S at P . A vector in the direction of the surface normal is called a surface normal vector of S
at P .
We can obtain such a vector by differentiating f(x(t), y(t), z(t)) = c with respect to t. By the chain rule,

∂f

∂x
x′ +

∂f

∂y
y′ +

∂f

∂z
z′ = grad f · r′(t) = 0,

where

x′ =
dx

dt
, y′ =

dy

dt
, z′ =

dz

dt
.

Hence grad f is orthogonal to all the vectors r′ in the tangent plane, so that it is a normal vector of S at P .
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 2

Find a unit normal vector n of the cone of revolution
z2 = 4(x2 + y2) at the point P : (1, 0, 2).

Solution.
The cone is the level surface z2 = 4(x2 + y2), or

f(x, y, z) = 4x2 + 4y2 − z2 = 0,

so that we have the equation of the cone as a level surface with
c = 0. The partial derivatives are

∂f

∂x
= 8x,

∂f

∂y
= 8y,

∂f

∂z
= −2z,

and the gradient is grad f = 8xi + 8yj − 2zk. At the point
P : (1, 0, 2) grad f = 8i − 4k = [8, 0,−4]. We have |grad f | =√

64 + 16 =
√

80. The unit normal vector of the cone at P is

n =
1

|grad f |
grad f =

1
√

80
(8i−4k) =

1

4
√

5
4(2i−k) =

2
√

5
i−

1
√

5
k.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Definition of divergence. Let

v(x, y, z) = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k

be a differentiable vector function. The (scalar) function

divv =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

is called the divergence of v or the divergence of the vector field defined by v.
Define the vector differential operator ∇ by

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k.

Then we can write the divergence as the scalar product

divv = ∇ · v =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
· (v1i + v2j + v3k) =

∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 3

The vector function

p = −c
(
x− x0

r3
i +

y − y0

r3
j +

z − z0
r3

k

)
,

where
r = [x− x0, y − y0, z − z0] = (x− x0)i + (y − y0)j + (z − z0)k

and

r = |r| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2,

describes the gravitational force (gravitational field).

Solution.
We have

∂

∂x

(
1

r

)
=

−2(x− x0)

2[(x− x0)2 + (y − y0)2 + (z − z0)2]
= −

x− x0

r3
,

and similarly
∂

∂y

(
1

r

)
= −

y − y0

r3
,

∂

∂z

(
1

r

)
= −

z − z0
r3

.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Then p is the gradient of the function

f(x, y, z) =
c

r
(r > 0) :

p = grad f =
∂

∂x

( c
r

)
i +

∂

∂y

( c
r

)
j +

∂

∂z

( c
r

)
k

A vector field p is said to be a gradient of f if p =grad f ; function f is called a scalar potential of p. In the
example above f is a scalar potential of the gravitational field.
Finding the second partial derivative using the chain rule with respect to x, y, z, we obtain

∂2

∂x2

(
1

r

)
= −

1

r3
+

3(x− x0)2

r5
,

∂2

∂y2

(
1

r

)
= −

1

r3
+

3(y − y0)2

r5
,

∂2

∂z2

(
1

r

)
= −

1

r3
+

3(z − z0)2

r5
.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

By adding the righthand and lefthand sides, one can show that the potential f satisfies the Laplace equation

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0,

so that
divp = div (grad f) = ∇2f = 0.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Definition of rotation. Let x, y, z be a positive oriented Cartesian coordinate system and

v(x, y, z) = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k

a differentiable vector function. Then the vector function

curlv = ∇× v =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

∣∣∣∣∣∣∣∣∣ =

(
∂v3

∂y
−
∂v2

∂z

)
i +

(
∂v1

∂z
−
∂v3

∂x

)
j +

(
∂v2

∂x
−
∂v1

∂y

)
k

is called rotation (or curl) of vector field v.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 4

Let x, y, z be a positive oriented Cartesian coordinate system. Find curl of the vector field

v(x, y, z) = yzi + 3zxj + zk.

Solution. The curl of v is calculated according to

curlv =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

yz 3xz z

∣∣∣∣∣∣∣∣∣ =

(
∂z

∂y
−
∂(3xz)

∂z

)
i +

(
∂(yz)

∂z
−
∂z

∂x

)
j +

(
∂(3xz)

∂x
−
∂(yz)

∂y

)
k = −3xi + yj + 2zk.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Theorem 4
For any twice continuously differentiable scalar function f ,

curl (grad f) = 0. (1)

The potential (or conservative) field is called rotation-free.

Proof.

curl (grad f) =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

fx fy fz

∣∣∣∣∣∣∣∣∣ =

(
∂fz

∂y
−
∂fy

∂z

)
i +

(
∂fx

∂z
−
∂fz

∂x

)
j +

(
∂fy

∂x
−
∂fx

∂y

)
k = (fzy − fyz)i + (fxz − fzx)j + (fyx − fxy)k = 0.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Theorem 5
For any twice continuously differentiable vector function v,

div (curlv) = 0. (2)

The field of rotation is called divergence-free.

Proof.

div (curlv) =
∂

∂x

(
∂v3

∂y
−
∂v2

∂z

)
+

∂

∂y

(
∂v1

∂z
−
∂v3

∂x

)
+

∂

∂z

(
∂v2

∂x
−
∂v1

∂y

)
=

(v3yx − v2zx) + (v1zy − v3xy) + (v2xz − v1yz) = 0.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

More vector differential identities:

∇(φψ) = ψ∇φ+ φ∇ψ.

∇ · (φF) = div (φF) = ∇φ · F + φ∇ · F.

∇ · (F×G) = ∇× F ·G− F · ∇ ×G.

∇× (∇× F) = ∇(∇ · F)−∇2F. (3)
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Formulate the divergence theorem of Gauss.

Theorem 6
Let T be a closed bounded region in space whose boundary is a piecewise smooth orientable surface S. Let
F(x, y, z) be a vector function that is continuous and has continuous first partial derivatives in some domain
containing T . Then ∫ ∫

T

∫
divFdV =

∫
S

∫
F · ndA.

In components∫ ∫
T

∫ (
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dxdydz =

∫
S

∫
(F1 cosα+ F2 cosβ + F3 cos γ)dA.

or ∫ ∫
T

∫ (
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dxdydz =

∫
S

∫
(F1dydz + F2dzdx+ F3dxdy).

22 / 143



LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 5

Evaluate

I =

∫
S

∫
(x3dydz + x2ydzdx+ x2zdxdy), (4)

where S is the closed surface consisting of the cylinder x2 + y2 = a2 (0 ≤ z ≤ b) and the circular disks z = 0
and z = b (x2 + y2 ≤ a2).

Solution.
F1 = x3, F2 = x2y, F3 = x2z.

Hence the divergence of F = [F1, F2, F3] is

divF =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
= 3x2 + x2 + x2 = 5x2.

The form of the surface suggests that we introduce polar coordinates

x = r cos θ, y = r sin θ (cylindriska koordinater r, θ, z)

and
dxdydz = rdrdθdz,
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

According to Gauss’s theorem, a surface integral is reduced to a triple integral if the area T is bounded by a
cylindrical surface S,∫

S

∫
(x3dydz + x2ydzdx+ x2zdxdy) =

∫ ∫
T

∫
divFdV =

∫ ∫
T

∫
5x2dxdydz =

5

∫ b

z=0

∫ a

r=0

∫ 2π

θ=0
r2 cos2 θrdrdθdz =

5b

∫ a

0

∫ 2π

0
r3 cos2 θdrdθ = 5b

a4

4

∫ 2π

0
cos2 θdθ =

5b
a4

8

∫ 2π

0
(1 + 2 cos θ)dθ =

5

4
πba4.
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Example 6

Evaluate

I =

∫
S

∫
F · ndA, F = 7xi− zk

over the sphere S : x2 + y2 + z2 = 4. Calculate the integral directly and using Gauss’s theorem.

Solution.
F(x, y, z) = [F1, F2, F3] is a differentiable vector function and its components are

F = [F1, 0, F3], F1 = 7x, F3 = −z.

The divergence of F is

divF =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
= 7 + 0− 1 = 6.

Accordingly,

I =

∫ ∫
T, klot

∫
divFdV = 6

∫ ∫
T, klot

∫
dxdydz = 6 ·

4

3
π23 = 64π. (5)
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

The surface integral of S can be calculated directly. Parametric representation of the sphere of radius 2

S : r(u, v) = 2 cos v cosui + 2 cos v sinuj + 2 sin vk,

u, v i rectangle R : 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2.

Determine the partial derivatives
ru = [−2 sinu cos v, 2 cos v cosu, 0],

rv = [−2 sin v cosu,−2 sin v sinu, 2 cos v],

and the normal vector

N = ru × rv =

∣∣∣∣∣∣∣∣∣
i j k

−2 sinu cos v 2 cos v cosu 0

−2 sin v cosu −2 sin v sinu 2 cos v

∣∣∣∣∣∣∣∣∣ = [4 cos2 v cosu, 4 cos2 v sinu, 4 cos v sin v].

On surface S,
x = 2 cos v cosu, z = 2 sin v,

and
F(r(u, v)) = F(S) = [7x, 0,−z] = [14 cos v cosu, 0,−2 sin v].
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LECTURE 1: DIFFERENTIAL OPERATIONS AND THEOREMS OF THE VECTOR ANALYSIS.

Then

F(r(u, v)) ·N(u, v) = (14 cos v cosu)4 cos2 v cosu+ (−2 sin v)(4 cos v sin v) = 56 cos3 v cos2 u− 8 cos v sin2 u.

The parameters u, v vary in the rectangle R : 0 ≤ u ≤ 2π, −π/2 ≤ v ≤ π/2. Now, we can write and calculate
the surface integral:∫

S

∫
F · ndA =

∫
R

∫
F(r(u, v)) ·N(u, v)dudv = 8

∫ 2π

0

∫ −π/2
−π/2

(7 cos3 v cos2 u− cos v sin2 v)dudv =

8

{
7

2

∫ 2π

0
(1 + cos 2u)du

∫ π/2

−π/2
cos3 vdv − 2π

∫ π/2

−π/2
cos v sin2 vdv

}
=

56π

∫ π/2

−π/2
cos3 vdv − 16π

∫ π/2

−π/2
cos vdv sin2 vdv =

8π

{
7

∫ π/2

−π/2
(1− sin2 v)d sin v − 2

∫ π/2

−π/2
dv sin2 vd sin v

}
=

8π

{
7

∫ 1

−1
(1− t2)dt− 2

∫ 1

−1
t2dt

}
= 8π[7 · (2− 2/3)− 4/3] = 8π · 4/3 · 6 = 64π.

coinciding with the value (5).
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LECTURE 1

HARMONIC FUNCTIONS
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LECTURE 1: HARMONIC FUNCTIONS

A twice continuously differentiable real-valued function u defined on a domain D is called harmonic if it satisfies
Laplace’s equation

∆u = 0 in D, (6)

where

∆u =
∂2u

∂x2
+
∂2u

∂y2
(7)

is called Laplace operator (Laplacian), the function u = u(x), and x = (x, y) ∈ R2. We will also use the
notation y = (x0, y0).
The function

Φ(x,y) = Φ(x− y) =
1

2π
ln

1

|x− y|
(8)

is called the fundamental solution of the Laplace equation. For a fixed y ∈ R2, y 6= x, the function Φ(x,y) is
harmonic, i.e., satisfies Laplace’s equation

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 in D. (9)

The proof follows by straightforward differentiation.
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LECTURE 1: HARMONIC FUNCTIONS

Let D ∈ R2 be a (two-dimensional) domain bounded by the closed smooth contour Γ and ∂
∂ny

denote the

directional derivative in the direction of unit normal vector ny to the boundary Γ directed into the exterior of Γ
and corresponding to a point y ∈ Γ. Then for every function u which is once continuously differentiable in the
closed domain D̄ = D + Γ, u ∈ C1(D̄), and every function v which is twice continuously differentiable in D̄,
v ∈ C2(D̄), Green’s first theorem (Green’s first formula) is valid∫ ∫

D

(u∆v + gradu · grad v)dx =

∫
Γ

u
∂v

∂ny
dly , (10)

where · denotes the inner product of two vector-functions. For u ∈ C2(D̄) and v ∈ C2(D̄), Green’s second
theorem (Green’s second formula) is valid∫ ∫

D

(u∆v − v∆u)dx =

∫
Γ

(
u
∂v

∂ny
− v

∂u

∂ny

)
dly , (11)

Let a twice continuously differentiable function u ∈ C2(D̄) be harmonic in the domain D. Then Green’s third
theorem (Green’s third formula) is valid

u(x) =

∫
Γ

(
Φ(x,y)

∂u

∂ny
− u(y)

∂Φ(x,y)

∂ny

)
dly , x ∈ D. (12)
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LECTURE 1: HARMONIC FUNCTIONS

Formulate the interior Dirichlet problem: find a function u that is harmonic in a domain D bounded by the
closed smooth contour Γ, continuous in D̄ = D ∪ Γ and satisfies the Dirichlet boundary condition:

∆u = 0 in D, (13)

u|Γ = −f, (14)

where f is a given continuous function.
Formulate the interior Neumann problem: find a function u that is harmonic in a domain D bounded by the
closed smooth contour Γ, continuous in D̄ = D ∪ Γ and satisfies the Neumann boundary condition

∂u

∂n

∣∣∣∣
Γ

= −g, (15)

where g is a given continuous function.

Theorem 7
The interior Dirichlet problem has at most one solution.

Theorem 8
Two solutions of the interior Neumann problem can differ only by a constant. The exterior Neumann problem
has at most one solution.
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LECTURE 1: HARMONIC FUNCTIONS

In the theory of BVPs, the integrals

u(x) =

∫
C

E(x,y)ξ(y)dly , v(x) =

∫
C

∂

∂ny
E(x,y)η(y)dly (16)

are called the potentials. Here, x = (x, y), y = (x0, y0) ∈ R2; E(x,y) is the fundamental solution of a
second-order elliptic differential operator;

∂

∂ny
=

∂

∂ny

is the normal derivative at the point y of the closed piecewise smooth boundary C of a domain in R2; and ξ(y)
and η(y) are sufficiently smooth functions defined on C. In the case of Laplace operator ∆u,

E(x,y) = Φ(x− y) =
1

2π
ln

1

|x− y|
. (17)
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In the case of the Helmholtz operator L(k) = ∆ + k2, one can take E(x,y) in the form

E(x,y) = E(x− y) =
i

4
H

(1)
0 (k|x− y|) =

1

2π
ln

1

|x− y|
+ h(k|x− y|), (18)

where H
(1)
0 (z) = −4iΦ(z) + h̃(z) is the Hankel function of the first kind and zero order (one of the so-called

cylindrical functions) and Φ(x− y) =
1

2π
ln

1

|x− y|
is the kernel of the two-dimensional single layer potential;

h̃(z) and h(z) are continuously differentiable and their second derivatives have a logarithmic singularity.
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Theorem 9
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. Then the kernel of the double-layer potential

V (x,y) =
∂Φ(x,y)

∂ny
, Φ(x,y) =

1

2π
ln

1

|x− y|
, (19)

is a continuous function on Γ for x, y ∈ Γ.

Gauss formula Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. For the double-layer
potential with a constant density

v0(x) =

∫
Γ

∂Φ(x,y)

∂ny
dly , Φ(x,y) =

1

2π
ln

1

|x− y|
, (20)

where the (exterior) unit normal vector n of Γ is directed into the exterior domain R2 \ D̄, we have

v0(x) = −1, x ∈ D,

v0(x) = −
1

2
, x ∈ Γ, (21)

v0(x) = 0, x ∈ R2 \ D̄.

34 / 143



LECTURE 1: HARMONIC FUNCTIONS

Corollary. Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. Introduce the single-layer
potential with a constant density

u0(x) =

∫
Γ

Φ(x,y)dly , Φ(x,y) =
1

2π
ln

1

|x− y|
. (22)

For the normal derivative of this single-layer potential

∂u0(x)

∂nx
=

∫
Γ

∂Φ(x,y)

∂nx
dly , (23)

where the (exterior) unit normal vector nx of Γ is directed into the exterior domain R2 \ D̄, we have

∂u0(x)

∂nx
= 1, x ∈ D,

∂u0(x)

∂nx
=

1

2
, x ∈ Γ, (24)

∂u0(x)

∂nx
= 0, x ∈ R2 \ D̄.
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Theorem 10
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. The double-layer potential

v(x) =

∫
Γ

∂Φ(x,y)

∂ny
ϕ(y)dly , Φ(x,y) =

1

2π
ln

1

|x− y|
, (25)

with a continuous density ϕ can be continuously extended from D to D̄ and from R2 \ D̄ to R2 \D with the
limiting values on Γ

v±(x′) =

∫
Γ

∂Φ(x′,y)

∂ny
ϕ(y)dly ±

1

2
ϕ(x′), x′ ∈ Γ, (26)

or

v±(x′) = v(x′)±
1

2
ϕ(x′), x′ ∈ Γ, (27)

where
v±(x′) = lim

h→±0
v(x + hnx′ ). (28)
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Corollary. Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. Introduce the single-layer
potential

u(x) =

∫
Γ

Φ(x,y)ϕ(y)dly , Φ(x,y) =
1

2π
ln

1

|x− y|
. (29)

with a continuous density ϕ. The normal derivative of this single-layer potential

∂u(x)

∂nx
=

∫
Γ

∂Φ(x,y)

∂nx
ϕ(y)dly (30)

can be continuously extended from D to D̄ and from R2 \ D̄ to R2 \D with the limiting values on Γ

∂u(x′)

∂nx ±
=

∫
Γ

∂Φ(x′,y)

∂nx′
ϕ(y)dly ∓

1

2
ϕ(x′), x′ ∈ Γ, (31)

or
∂u(x′)

∂nx ±
=
∂u(x′)

∂nx
∓

1

2
ϕ(x′), x′ ∈ Γ, (32)

where
∂u(x′)

∂nx′
= lim
h→±0

nx′ · grad v(x′ + hnx′ ). (33)
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Let SΠ(Γ) ∈ R2 be a domain bounded by the closed piecewise smooth contour Γ. We assume that a rectilinear
interval Γ0 is a subset of Γ, so that Γ0 = {x : y = 0, x ∈ [a, b]}.
Let us say that functions Ul(x) are the generalized single layer (SLP) (l = 1) or double layer (DLP) (l = 2)
potentials if

Ul(x) =

∫
Γ

Kl(x, t)l(t)dt, x = (x, y) ∈ SΠ(Γ),

where
Kl(x, t) = gl(x, t) + Fl(x, t) (l = 1, 2),

g1(x, t) = g(x, y0) =
1

π
ln

1

|x− y0|
, g2(x, t) =

∂

∂y0
g(x,y0) [y0 = (t, 0)],

F1,2 are smooth functions, and we shall assume that for every closed domain S0Π(Γ) ⊂ SΠ(Γ), the following
conditions hold

i) F1(x, t) is once continuously differentiable with respect to the
variables of x and continuous in t;

ii) F2(x, t) and

F 1
2 (x, t) =

∂

∂y

t∫
q

F2(x, s)ds, q ∈ R1,

are continuous.
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Introduce integral operators K0 and K1 acting in the space C(Γ) of continuous functions defined on contour Γ

K0(x) = 2

∫
Γ

∂Φ(x,y)

∂ny
ϕ(y)dly , x ∈ Γ (34)

and

K1(x) = 2

∫
Γ

∂Φ(x,y)

∂nx
ψ(y)dly , x ∈ Γ. (35)

Theorem 11
The operators I −K0 and I −K1 have trivial nullspaces

N(I −K0) = {0}, N(I −K1) = {0},

The nullspaces of operators I +K0 and I +K1 have dimension one and

N(I +K0) = span {1}, N(I +K1) = span {ψ0}

with ∫
Γ

ψ0dly 6= 0.
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Theorem 12
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. The double-layer potential

v(x) =

∫
Γ

∂Φ(x,y)

∂ny
ϕ(y)dly , Φ(x,y) =

1

2π
ln

1

|x− y|
, x ∈ D, (36)

with a continuous density ϕ is a solution of the interior Dirichlet problem provided that ϕ is a solution of the
integral equation

ϕ(x)− 2

∫
Γ

∂Φ(x,y)

∂ny
ϕ(y)dly = −2f(x), x ∈ Γ, (37)

where f(x) is given by (14).

Theorem 13
The interior Dirichlet problem has a unique solution.
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Theorem 14
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. The double-layer potential

u(x) =

∫
Γ

∂Φ(x,y)

∂ny
ϕ(y)dly , x ∈ R2 \ D̄, (38)

with a continuous density ϕ is a solution of the exterior Dirichlet problem provided that ϕ is a solution of the
integral equation

ϕ(x) + 2

∫
Γ

∂Φ(x,y)

∂ny
ϕ(y)dly = 2f(x), x ∈ Γ. (39)

Here we assume that the origin is contained in D.
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Theorem 15
The exterior Dirichlet problem has a unique solution.

Theorem 16
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. The single-layer potential

u(x) =

∫
Γ

Φ(x,y)ψ(y)dly , x ∈ D, (40)

with a continuous density ψ is a solution of the interior Neumann problem provided that ψ is a solution of the
integral equation

ψ(x) + 2

∫
Γ

∂Φ(x,y)

∂nx
ψ(y)dly = 2g(x), x ∈ Γ. (41)

Theorem 17
The interior Neumann problem is solvable if and only if∫

Γ
ψdly = 0 (42)

is satisfied.
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Curves in a parametric form and line integrals. Let xyz be a Cartesian coordinate system in space. We write a
spatial curve C using a parametric representation

r(t) = [x(t), y(t), z(t)] = x(t)i + y(t)j + z(t)k (t ∈ I), (43)

where variable t is a parameter.
As far as a line integral over a spatial curve C is concerned, C is called the path of integration. The path of
integration with spatial endpoints A to B goes from A to B (has a certain direction) so that A := r(a) is its
initial point and B := r(b) is its terminal point. C is now oriented. The direction from A to B, in which t
increases is called the positive direction on C. Points A and B may coincide, then C is called a closed path.
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Definition of line integral. If C is an oriented curve in a parametric form

P = P (t) (x = x(t), y = y(t), z = z(t)) t ∈ I = (t0, t1), t : t0 → t1, (44)

and f(P ) and g(P ) are real (or complex) function defined on C, the line integral of a scalar function is defined
as ∫

C
f(P )dg(P ) =

∫ t=t1

t=t0

f(P (t))dg(P (t)), (45)

(if the right-hand side in the equality specifying the integral exists).

A line integral of a vector function F(r) over a curve C is defined by∫
C
F(r) · dr =

∫ b

a
F(r(t)) ·

dr

dt
dt,

or componentwise∫
C
F(r) · dr =

∫
C

(F1dx+ F2dy + F3dz) =

∫ b

a
(F1x

′ + F2y
′ + F3z

′)dt (′= d/dt).
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Example 7

Find the value of the line integral when F(r) = [−y,−xy] and C is a circular arc from (1, 0) to (0, 1).

Solution. We may represent C by

r(t) = [cos t, sin t] = cos ti + sin tj, (46)

and
r(t) = [cos t, sin t], t : 0→ π/2.

The parameter interval is I = (t0, t1) with the initial point t0 = 0 and endpoint t1 = π/2. In such an
orientation,

P (0) = (cos 0, b sin 0) = (1, 0)

is the initial point and
P (π/2) = (a cosπ/2, b sinπ/2) = (0, 1)

is the endpoint.
We have x = cos t, y = sin t and can write vector function F(r) on the unit circle

F(r(t)) = −y(t)i− x(t)y(t)j = [− sin t,− cos t sin t] = − sin ti− cos t sin tj.
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Determine
r′(t) = − sin ti + cos tj

and calculate the line integral:∫
C
F(r) · dr =

∫ π/2

0
(− sin ti− cos t sin tj) · (− sin ti + cos tj)dt =

∫ π/2

0
(sin2 t− cos2 t sin t)dt =

∫ π/2

0
[(1/2)(1− cos 2t)− cos2 t sin t]dt =

(1/2)

∫ π/2

0
[(1− cos 2t)dt+

∫ π/2

0
cos2 td cos t =

π

4
−

1

3
.
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Example 8

Find the line integral for F(r) = [5z, xy, x2z] when curves C1 and C2 have the same initial point A : (0, 0, 0)
and endpoint B : (1, 1, 1), C1 is an interval of the straight line

r1(t) = [t, t, t] = ti + tj + tk, 0 ≤ t ≤ 1,

and C2 is a parabola
r2(t) = [t, t, t2] = ti + tj + t2k, 0 ≤ t ≤ 1.

Solution. We have
F(r1(t)) = 5ti + t2j + t3k, F(r2(t)) = 5t2i + t2j + t4k,

r′1(t) = i + j + j, r′2(t) = i + j + 2tj.

Then we can calculate the line integral over C1∫
C1

F(r) · dr =

∫ 1

0
F(r1(t)) · r′1(t)dt =

∫ 1

0
(5t+ t2 + t3)dt =

5

2
+

1

3
+

1

4
=

37

12
.

The line integral over C2 is∫
C2

F(r) · dr =

∫ 1

0
F(r2(t)) · r′2(t)dt =

∫ 1

0
(5t2 + t2 + 2t5)dt =

5

3
+

1

3
+

2

6
=

28

12
.

Thus we have got two different values.
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Theorem 18

The line integral ∫
C
F(r) · dr =

∫
C

(F1dx+ F2dy + F3dz),

where F1, F2, F3 are continuous functions on a domain D in space, is path independent in D, if and only if
F = [F1, F2, F3] is the gradient of a function f = f(x, y, z) in D :

F = grad f ;

with the components

F1 =
∂f

∂x
, F2 =

∂f

∂y
, F3 =

∂f

∂z
.

If F is the gradient field and f is a scalar potential of F then the line integral∫
C
F(r) · dr = f(B)− f(A),

where A is the initial point and B the endpoint of C.
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Example 9

Show that the integral ∫
C
F(r) · dr =

∫
C

(2xdx+ 2ydy + 4zdz)

is path independent in any domain in space and find its value if integration is performed from A : (0, 0, 0) to B : (2, 2, 2).

Solution. We have
F = [2x, 2y, 4z] = 2xi + 2yj + 4zk = grad f,

and it is easy to check that
f(x, y, z) = x2 + y2 + 2z2.

According to Theorem 18, the line integral is path independent in any domain in space. To find its value, we choose the
convenient straight path

r(t) = [t, t, t] = t(i + j + k), 0 ≤ t ≤ 2.

Let A : (0, 0, 0), t = 0, be the initial point and B : (2, 2, 2), t = 2 the endpoint. Then we get

r′(t) = i + j + j.

F(r) · r′ = 2t+ 2t+ 4t = 8t

and ∫
C

(2xdx+ 2ydy + 4zdz) =

∫ 2

0
F(r(t)) · r′(t)dt =

∫ 2

0
8tdt = 16.

According to Theorem 18, ∫
C
F(r)dr = f(2, 2, 2)− f(0, 0, 0) = 4 + 4 + 2 · 4− 0 = 16.
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Theorem 19

The line integral ∫
C
F(r) · dr =

∫
C

(F1dx+ F2dy + F3dz)

where F1, F2, F3 are continuous functions on a domain D in space is path independent in D if and only if∫
C
F(r) · dr = 0

along every closed path C in D.

The differential form
F1dx+ F2dy + F3dz

is called exact in a domain D in space if it is the differential

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

of a differentiable function f(x, y, z) everywhere in D:

F1dx+ F2dy + F3dz = df,

where

F1 =
∂f

∂x
, F2 =

∂f

∂y
, F3 =

∂f

∂z
.
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Green’s formula. Let C be a closed curve in xy-plane that does not intersect itself and makes just one turn in
the positive direction (counterclockwise). Let F1(x, y) and F2(x, y) be functions that are continuous and have

continuous partial derivatives
∂F1

∂y
and

∂F2

∂x
everywhere in some domain R enclosed by C. Then

∫
R

∫ (
∂F2

∂x
−
∂F1

∂y

)
dxdy =

∫
C

(F1dx+ F2dy).

Here we integrate along the entire boundary C of R so that R is on the left as we advance in the direction of
integration.
One can write Green’s formula with the help of curl∫

R

∫
(curlF) · kdxdy =

∫
C
F · dr.
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Example 10

Verify Green’s formula for F1 = y2 − 7y, F2 = 2xy + 2x and C being a circle R : x2 + y2 = 1.

Solution. Calculate a double integral∫
R

∫ (
∂F2

∂x
−
∂F1

∂y

)
dxdy =

∫
R

∫
[(2y + 2)− (2y − 7)]dxdy = 9

∫
R

∫
dxdy = 9π.

Calculate the corresponding line integral. Circle C in the parametric form is given by

r(t) = [cos t, sin t] = cos ti + sin tj.

r′(t) = − sin ti + cos tj.

On C
F1 = y2 − 7y = sin2 t− 7 sin t, F2 = 2xy + 2x = 2 cos t sin t+ 2 cos t,

and we get that the line integral in Green’s formula is equal to the double integral:∫
C
F(r) · dr =

∫ 2π

0
[(sin2 t− 7 sin t)(− sin t) + (2 cos t sin t+ 2 cos t) cos t]dt = 0 + 7π + 0 + 2π = 9π.
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Surface integral. To define a surface integral, we take a surface S given by a parametric representation

r(u, v) = [x(u, v), y(u, v), z(u, v)] = x(u, v)i + y(u, v)j + z(u, v)k, u, v ∈ R,

the normal vector
N = ru × rv 6= 0,

and unit normal vector

n =
1

|N|
N.

A surface integral of a vector function F(r) over a surface S is defined as∫
S

∫
F · ndA =

∫
R

∫
F(r(u, v)) ·N(u, v)dudv. (47)
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Note that
ndA = n|N|dudv = |N|dudv,

and we assume that the parameters u, v belongs to a region R in the u, v-plane.
Write the equivalent expression componentwise using directional cosine:

F = [F1, F2, F3] = F1i + F2j + F3k,

n = [cosα, cosβ, cos γ] = cosαi + cosβj + cos γk,

N = [N1, N2, N3] = N1i +N2j +N3k,

and ∫
S

∫
F · ndA =

∫
S

∫
(F1 cosα+ F2 cosβ + F3 cos γ)dA =∫

S

∫
(F1N1 + F2N2 + F3N3)dudv.
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Example 11

Evaluate a surface integral of the vector function F = [x2, 0, 3y2] over a portion of the plane

S : x+ y + z = 1, 0 ≤ x, y, z ≤ 1.

Solution. Writing x = u and y = v, we have z = 1− u− v and can represent S in the form

r(u, v) = [u, v, 1− u− v], 0 ≤ v ≤ 1, 0 ≤ u ≤ 1− v.

We have
ru = [1, 0,−1], rv = [0, 1,−1];

a normal vector is

N = ru × rv =

∣∣∣∣∣∣∣∣∣
i j k

1 0 −1

0 1 −1

∣∣∣∣∣∣∣∣∣ = i + j + k = [1, 1, 1].
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The corresponding unit normal vector

n =
1

|N|
N =

1
√

3
(i + j + k).

On surface S,
F(r(u, v)) = F(S) = [u2, 0, 3v2] = u2i + 3v2k.

Hence
F(r(u, v)) ·N(u, v) = [u2, 0, 3v2] · [1, 1, 1] = u2 + 3v2.

Parameters u, v belong to triangle R : 0 ≤ v ≤ 1, 0 ≤ u ≤ 1− v. Now we can write and calculate the flux
integral: ∫

S

∫
F · ndA =

∫
R

∫
F(r(u, v)) ·N(u, v)dudv =

∫
R

∫
(u2 + 3v2)dudv =∫ 1

0

∫ 1−v

0
(u2 + 3v2)dudv =

∫ 1

0
dv

∫ 1−v

0
u2du+ 3

∫ 1

0
v2dv

∫ 1−v

0
du =

= (1/3)

∫ 1

0
(1− v)3dv + 3

∫ 1

0
v2(1− v)dv = (1/3)

∫ 1

0
t3dt+ 3

∫ 1

0
(v2 − v3)dv =

(1/3) · (1/4) + 3(1/3− 1/4) = 1/3.
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LECTURE 1: BASIC ELECTROMAGNETIC THEORY. MAXWELLS AND HELMHOLTZ EQUATIONS.

The classical macroscopic electromagnetic field is described by four three-component vector-functions E(r, t),
D(r, t), H(r, t), and B(r, t) of the position vector r = (x, y, z) and time t. The fundamental field vectors
E(r, t) and H(r, t) are called electric and magnetic field intensities. D(r, t) and B(r, t) which will be eliminated
from the description via constitutive relations are called the electric displacement and magnetic induction. The
fields and sources are related by the Maxwell equation system

∂D

∂t
− rotH = −J, (48)

∂B

∂t
+ rotE = 0, (49)

divB = 0, (50)

divD = ρ, (51)

written in the standard SI units.
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The constitutive relations are

D = εE, (52)

B = µH, (53)

J = σE. (54)

Here ε, µ, and σ, which are generally bounded functions of position (the first two are assumed positive), are
permittivity, permeability, and conductivity of the medium for J being the conductivity current density.
In vacuum, that is, in a homogeneous medium with constant characteristics ε = ε0, µ = µ0, and σ = 0, the
Maxwell equation system takes a simpler form

rotH = ε0
∂E

∂t
, (55)

rotE = −µ0
∂H

∂t
, (56)

divH = 0, (57)

divE = ρ. (58)
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In the case of a homogeneous medium, it is reasonable to obtain equations for each vector E(r, t) and H(r, t).
To this end, assume that ρ = 0. Applying the operation rot to equation (48) and taking into account the
constitutive relations, we have

rotrotH = ε
∂

∂t
rotE + σrotE. (59)

Using the vector differential identity rotrotA = graddivA−∆A and taking into notice equation (49), we
obtain the equation for magnetic field H

graddivH−∆H = −εµ
∂2H

∂t2
− σµ

∂H

∂t

or

∆H =
1

a2

∂2H

∂t2
+ σµ

∂H

∂t

(
a2 =

1

εµ

)
(60)

because divH = 0.
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The same equation holds for electric field E

∆E =
1

a2

∂2E

∂t2
+ σµ

∂E

∂t

(
a2 =

1

εµ

)
. (61)

Equations (60) or (61) hold for all field components,

∆u =
1

a2

∂2u

∂t2
+ σµ

∂u

∂t
, (62)

where u is one of the components Hx, Hy , Hz or Ex, Ey , Ez .
If the medium is nonconducting, σ = 0, then (60), (61), or (62) yield a standard wave equation

∆u =
1

a2

∂2u

∂t2
. (63)

This implies that electromagnetic processes are actually waves that propagate in the medium with the speed

a =
1
√
εµ

(the latter holds for vacuum).
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Time-periodic (time-harmonic) fields

H(r, t) = H(r)e−iωt, E(r, t) = E(r)e−iωt (64)

constitute a very important particular case. Functions E and H are the field complex amplitudes; the quantities
ReE and ReH have direct physical meaning.
Assuming that complex electromagnetic field (64) satisfies Maxwell equations and that the currents are also
time-harmonic, J(r, t) = J(r)e−iωt, substitute (64) into (48)–(51) to obtain

rotH = −iωD + J, (65)

rotE = iωB, (66)

divB = 0, (67)

divD = ρ. (68)

Since J = σE, equation (65) can be transformed by introducing the complex permittivity

ε′ = ε+ i
σ

ω
.

As a result, system (65)–(68) takes the form

rotH = −iωε′E, (69)

rotE = iωµH, (70)

div (µH) = 0, (71)

div (εE) = ρ. (72)

In a homogeneous medium and when external currents are absent, equations (71) and (72) follow from the first
two Maxwell equations (69) and (70).
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Consider the simplest time-harmonic solutions to Maxwell equations in a homogeneous medium (with constant
characteristics), plane electromagnetic waves. In the absence of free charges when divE = 0, the electric field
vector satisfies the equation

rotrotE = ω2ε′µE, (73)

or

∆E + κ2E = 0, (74)

where

ε′ = ε+ i
σ

ω
, κ2 = ω2ε′µ = k2 + iωµσ, k = ω

√
εµ. (75)

In the cartesian coordinate system, equation (74) holds for every field component,

∆u+ κ2u = 0, (76)

where u is one of the components Ex, Ey , Ez .
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The Helmholtz equation (76) has a solution in the form of a plane wave; componentwise,

Eα = E0
αe
i(κxx+κyy+κzz), κ2

x + κ2
y + κ2

z = κ2 (α = x, y, z). (77)

Here κ is called the wave propagation constant. Therefore, the vector Helmholtz equation (74) has a solution

E = E0e
i(κxx+κyy+κzz) = E0e

ik·r, (78)

where the vectors

k = (κx, κy , κz), r = (x, y, z), E0 = const. (79)

Since divE = 0, we have

divE = div (E0e
ik·r) = ieik·rk ·E0 = 0.

Thus, k ·E0 = 0 so that the direction of vector E is orthogonal to the direction of the plane wave propagation
governed by vector k.
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Vectors E and H are coupled by the relation

rotE = iωµH. (80)

Since

rot (E0e
ik·r) = [grad eik·r, E0],

we have

√
ε′[k0, E0] =

√
µH0, (81)

where k0 = k/|k| is the unit vector in the direction of the wave propagation. Thus, vectors E and H are not
only orthogonal to the direction of the wave propagation but also mutually orthogonal:

E ·H = 0, E · k = 0, H · k = 0. (82)

We see that the Maxwell equations have a solution in the form of a plane electromagnetic wave

E(r) = E0e
ik·r, H(r) = H0e

ik·r, (83)

where

√
ε′[k0, E] =

√
µH,

√
µ[k0, H] = −

√
ε′E, (84)

66 / 143



LECTURE 1: BASIC ELECTROMAGNETIC THEORY. MAXWELLS AND HELMHOLTZ EQUATIONS.

Introduce the dimensionless variables and parameters

k0x→ x,
√
µ0/ε0H→ H, E→ E, k2

0 = ε0µ0ω
2,

where ε0 and µ0 are permittivity and permeability of vacuum. Propagation of electromagnetic waves along a
tube (a waveguide) with cross section Ω (a 2-D domain bounded by smooth curve Γ) parallel to the x3-axis in
the cartesian coordinate system x1, x2, x3, x = (x1, x2, x3), is described by the homogeneous system of
Maxwell equations (written in the normalized form) with the electric and magnetic field dependence eiγx3 on
longitudinal coordinate x3 (the time factor eiωt is omitted):

rotE = −iH, x ∈ Σ,

rotH = iεE,

E (x) = (E1 (x′) e1 + E2 (x′) e2 + E3 (x′) e3) eiγx3 ,

H (x) = (H1 (x′) e1 +H2 (x′) e2 +H3 (x′) e3) eiγx3 ,

x′ = (x1, x2) ,

(85)

with the boundary conditions for the tangential electric field components on the perfectly conducting surfaces

Eτ |M = 0, (86)
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Write system of Maxwell equations (85) componentwise

∂H3

∂x2
− iγH2 = iεE1,

∂E3

∂x2
− iγE2 = −iH1, iγH1 −

∂H3

∂x1
= iεE2,

iγE1 −
∂E3

∂x1
= −iH2,

∂H2

∂x1
−
∂H1

∂x2
= iεE3,

∂E2

∂x1
−
∂E1

∂x2
= −iH3,

and express functions E1, H1, E2, and H2 via E3 and H3 from the first, second, fourth, and fifth equalities,
denoting k̃2 = ε− γ2,

E1 =
i

k̃2

(
γ
∂E3

∂x1
−
∂H3

∂x2

)
, E2 =

i

k̃2

(
γ
∂E3

∂x2
+
∂H3

∂x1

)
, (87)

H1 =
i

k̃2

(
ε
∂E3

∂x2
+ γ

∂H3

∂x1

)
, H2 =

i

k̃2

(
−ε

∂E3

∂x1
+ γ

∂H3

∂x2

)
.

Note that this representation is possible if γ2 6= ε1 and γ2 6= ε2.
It follows from (87) that the field of a normal wave can be expressed via two scalar functions

Π (x1, x2) = E3 (x1, x2) , Ψ (x1, x2) = H3 (x1, x2) .
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If to look for particular solutions with E3 ≡ 0 then we have a separate problem for the set of component
functions [E1, E2, H3], [H1, H2, 0] which are called TE-waves (transverse electric) or the case of H-polarization.
For particular solutions with H3 ≡ 0 we have a problem for the set of component functions [H1, H2, E3],
[E1, E2, 0] called TM-waves (transverse magnetic) or the case of E-polarization. These two cases constitute
two fundamental polarizations of the electromagnetic field associated with a given direction of propagation.
For γ = 0 when we consider fields independent of one of the coordinates (x3) we have two separate problems
for the sets of component functions [E1, E2, H3], TE-(H)polarization, and [H1, H2, E3], TM-(E)polarization.
Thus the problem on normal waves is reduced to boundary eigenvalue problems for functions Π and Ψ. Namely,
from (85) and (86) we have the following eigenvalue problem on normal waves in a waveguide with
homogeneous filling: to find γ ∈ C, called eigenvalues of normal waves such that there exist nontrivial solutions
of the Helmholtz equations

∆Π + k̃2Π = 0, x′ = (x1, x2) ∈ Ω (88)

∆Ψ + k̃2Ψ = 0, k̃2 = ε− γ2, (89)

satisfying the boundary conditions on Γ0

Π|Γ0
= 0,

∂Ψ

∂n

∣∣∣∣
Γ0

= 0, (90)

In fact, it is necessary to determine only one function, H3 for the TE-polarization or E3 for the
TM-polarization; the remaining components are obtained using differentiation.
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In the two-dimensional case, the Helmholtz equation L(k2)u = 0 written in the polar coordinates r = (r, φ) has
the form

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂φ2
+ k2u = 0. (91)

Assume that the function u = u(r) satisfies the Helmholtz equation outside a circle of radius r0. On any circle
of radius r > r0 function u can be decomposed in a trigonometric Fourier series

u(r) =
∞∑

n=−∞
un(r)einφ (0 < φ < 2π), (92)

where the coefficients

un(r) =
1

2π

∫ 2π

0
u(r)e−inφdφ (93)

are functions of r. In order to find un(r) multiply equations (91) by 1
2π
e−inφ and integrate over a circle of

radius r.
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As a result of integration, we obtain

1

r

d

dr

(
r
dun

dr

)
−
n2

r2
un + k2un = 0, n = 0,±1, . . . . (94)

(94) is a second-order ordinary differential equation with constant coefficients for un(r) which holds for r > r0.
Equation (94) is actually the Bessel equation of order n. Its general solution can be written as

un(r) = AnH
(1)
n (kr) +BnH

(2)
n (kr), (95)

where H
(1,2)
n (z) are its linearly independent solutions; they are the nth-order Hankel functions of the first and

second kind, respectively.
Thus any solution u = u(r) to the homogeneous Helmholtz equation (satisfied outside a circle of radius r0) can
be represented for r > r0 in the form of a series

u(r) =
∞∑

n=−∞
[AnH

(1)
n (kr) +BnH

(2)
n (kr)]einφ (0 < φ < 2π, r > r0). (96)
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At infinity, the following asymptotical formulas are valid

H
(1,2)
n (z) =

√
2

πz
e±i(z−

πn
2
−π

4 ) +O

(
1

z3/2

)
, (97)

which yields an asymptotic estimate of the solution to the homogeneous Helmholtz equation at infinity

u(r) = O

(
1
√
r

)
. (98)

For the zero-order Hankel functions of the first and second kind, respectively, the following asymptotical
formulas are valid

H
(1)
0 (z) =

√
2

πz
ei(z−

π
4 ) + . . . , (99)

H
(2)
0 (z) =

√
2

πz
e−i(z−

π
4 ) + . . . ,
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Let us recall first that the plane waves propagation along the x-axis have the form

û = f
(
t−

x

a

)
, ˆ̂u = f

(
t+

x

a

)
, (100)

where û and ˆ̂u are, respectively, the forward wave (propagating in the positive direction of the x-axis) and
backward wave (propagating in the negative direction of the x-axis). They satisfy the following first-order
partial differential equations

∂û

∂x
+

1

a

∂û

∂t
= 0, (101)

∂ ˆ̂u

∂x
−

1

a

∂ ˆ̂u

∂t
= 0. (102)

In the stationary mode

u = v(x)eiωt (103)

For the amplitude function v these relations take the form

∂v̂

∂x
+ ikv̂ = 0, (104)

∂ ˆ̂v

∂x
− ikˆ̂v = 0, (105)

for the forward and backward waves, respectively, where k =
ω

a
.
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Spherical waves. If a spherical wave is excited by the sources situated in a bounded part of the space (not at
infinity), then at large distances from the source, a spherical wave is similar to a plane wave whose amplitude

decays as
1

r
. This natural physical assumption leads to a conclusion that the outgoing, respectively, incoming,

spherical waves must satisfy the relationships

∂u

∂r
+

1

a

∂u

∂t
= o

(
1

r

)
, (106)

∂u

∂r
−

1

a

∂u

∂t
= o

(
1

r

)
. (107)

For the amplitude functions in the stationary mode we have

∂v

∂r
+ ikv = o

(
1

r

)
for outgoing spherical waves, (108)

∂v

∂r
− ikv = o

(
1

r

)
for incoming spherical waves. (109)
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Let us prove now that at large distances from the source, any outgoing spherical wave decays as
1

r
.

1. In the case of a point source at the origin, this statement is trivial because the wave itself has the form

u(r, t) =
ei(ωt−kr)

r
= v0(r)eiωt, (110)

so that

∂v0

∂r
+ ikv0 = o

(
1

r

)
. (111)

Check this relationship.

76 / 143



LECTURE 1: STATEMENTS AND ANALYSIS OF THE BVPS FOR MAXWELLS AND HELMHOLTZ EQUATIONS.

2. Let a spherical wave be excited by a point source situated at a point r0. The amplitude of the spherical
wave is

v0(r) =
eikR

R
, R = |r− r0| =

√
r2 + r2

0 − 2rr0 cos θ. (112)

Calculating the derivative we obtain

∂R

∂r
=
r − r0 cos θ

R
∼ 1 +O

(
1

r

)
(113)

and

∂v0

∂R
+ ikv0 = o

(
1

R

)
.

in view of (111). Next,

∂v0

∂r
=
∂v0

∂R

∂R

∂r
=
∂v0

∂R

(
1 +O

(
1

r

))
=
∂v0

∂R
+ o

(
1

r

)
because

∂v0

∂R
·O
(

1

r

)
= o

(
1

r

)
.

Finally,

∂v0

∂r
+ ikv0 + o

(
1

r

)
= o

(
1

r

)
(114)

what is to be proved.
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3. Show that the volume potential

v(r) =

∫
T
f(r0)

e−ikR

R
dτr0 , R = |r− r0|, (115)

satisfies condition (108). Introducing the notation

Pv =
∂v

∂r
+ ikv, (116)

we obtain

Pv =

∫
T
f(r0)P

(
e−ikR

R

)
dτr0 =

∫
T
f(r0)o

(
1

r

)
dτr0 = o

(
1

r

)
. (117)

Volume potential (115) is the amplitude of an outgoing wave excited by the sources distributed arbitrarily in a
bounded domain T . Also, function v defined by (115) satisfies the inhomogeneous Helmholtz equation

L(k2)u = −f and decays as
1

r
for r →∞. In addition, it satisfies the condition

∂v

∂r
+ ikv = o

(
1

r

)
. (118)
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Theorem 20
There is one and only one solution to the inhomogeneous Helmholtz equation

L(k2)v = (∆ + k2)v = −f(r), (119)

where f(r) is a function with local support, which satisfies the conditions at infinity

v = O

(
1

r

)
, (120)

∂v

∂r
+ ikv = o

(
1

r

)
.

Proof. Assuming that there are two different solutions v1 and v2 and setting

w = v1 − v2,

we see that w satisfies the homogeneous Helmholtz equation L(k2)w = 0 and the conditions at infinity (120).
Let ΣR be a sphere of radius R (later, we will take the limit R→∞). Applying the third Green formula to

w(r) and the fundamental solution φ0(r0) =
e−ikR

4πR
, R = |r0 − r|, we arrive at the integral representation of w

at a point r ∈ ΣR

w(r) =

∫
ΣR

[
φ0(r0)

∂w

∂r
− w

∂

∂r
(φ0(r0))

]
dσr0 . (121)
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The conditions at infinity (120) for w(r) and φ0(r) yield

φ0
∂w

∂r
− w

∂

∂ν
(φ0) = φ0

[
−ikw + o

(
1

r

)]
− (122)

− w

[
−ikφ0 + o

(
1

r

)]
= φ0o

(
1

r

)
− wo

(
1

r

)
= o

(
1

r2

)
.

Therefore,

w(r) =

∫
ΣR

o

(
1

r2

)
dσr0 → 0, R→∞. (123)

This implies w(r) = 0 at any r ∈ ΣR and thus at any spatial r.
Conditions (120) are called Sommerfeld radiation conditions.
In the two-dimensional case the Sommerfeld radiation conditions at infinity take the form

v = O

(
1
√
r

)
, (124)

lim
r→∞

√
r

(
∂v

∂r
+ ikv

)
= 0.
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Theorem 21
Let u0(r) be a solution to the Helmholtz equation satisfied outside a circle of radius r0. If

lim
r→∞

∫
Cr

|u|2dl = 0, (125)

where Cr is a circle of radius r, then u ≡ 0 for r > r0.

Proof. Any solution u = u(r) to the (homogeneous) Helmholtz equation (satisfied outside a circle of radius
r0) can be represented for r > r0 in the form of series (96)

u(r) =
∞∑

n=−∞
un(r)einφ, un(r) = AnH

(1)
n (kr) +BnH

(2)
n (kr) (0 < φ < 2π, r > r0). (126)

Therefore,

lim
r→∞

∫
Cr

|u|2dl = 2π
∞∑

n=−∞
r|un(r)|2. (127)
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If

lim
r→∞

∫
Cr

|u|2dl = 0,

then (127) yields

lim
r→∞

r|un(r)|2 = 0, n = 0,±1,±2, . . . . (128)

Next, according to asymptotical formulas (97) for Hankel functions r|un(r)|2 are bounded quantities at r →∞,
namely,

r|un(r)|2 = rO

(
1

r

)
= O(1), n = 0,±1,±2, . . . , (129)

which, together with (128), implies

An = Bn = 0, n = 0,±1,±2, . . . , (130)

and, consequently, u ≡ 0 for r > r0 in line with representation (126).
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Theorem 22
Let u0(r) be a solution to the Helmholtz equation satisfied outside a sphere Sr0 of radius r0. If

lim
r→∞

∫
Sr

|u|2ds = 0, (131)

then u ≡ 0 for r > r0.

For the vector solutions of Maxwell equations (69) and (70), electromagnetic field E(r), H(r), the similar
statements are valid

Theorem 23
Let E(r), H(r) be a solution to the Maxwell equation system satisfied outside a sphere of radius r0. If

lim
r→∞

∫
Sr

|[H, er]|2ds = 0, (132)

or

lim
r→∞

∫
Sr

|[E, er]|2ds = 0, (133)

where Sr is a sphere of radius r and er = r/r is the unit position vector of the points on Sr, then E(r) ≡ 0,
H(r) ≡ 0 for r > r0.
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Formulate a scalar (acoustical) problem of the wave diffraction by a transparent body Ω1. Let Ω1 be a
domain bounded by a piecewise smooth surface Σ. The problem under consideration is reduced to a BVPs for
the inhomogeneous Helmholtz equation with a piecewise constant coefficient

∆u0(r) + k2
0u0(r) = −f0, r ∈ Ω0 = R3 \ Ω1, (134)

∆u1(r) + k2
1u1(r) = −f1, r ∈ Ω1;

solution u satisfies the conjugation conditions on Σ

u1 − u0 = 0,
∂u1

∂n
−
∂u0

∂n
= 0, (135)

and the conditions at infinity

u0 = O

(
1

r

)
, (136)

∂u0

∂r
− ik0u0 = o

(
1

r

)
.
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Theorem 24
The solution to problem (134)–(136) is unique.

Proof. Since problem (134)–(136) is linear, it is sufficient to prove that the corresponding homogeneous
problem (with f0 = f1 = 0) has only a trivial solution. Together with u0 and u1 consider the corresponding
complex conjugate functions u∗0 and u∗1. They satisfy the same boundary and transmission conditions; however,
the condition at infinity takes the form

∂u∗0
∂r

+ ik0u
∗
0 = o

(
1

r

)
. (137)

Applying the second Green formula to u∗1 and u∗1 in domain Ω1, we obtain∫
Σ

[
u1
∂u∗1
∂ν
− u∗1

∂u1

∂ν

]
dσr0 = 0, (138)

where ν denotes the unit normal vector to the boundary Σ directed into the exterior of Ω1. Let SR be a sphere
of sufficiently large radius R containing domain Ω1. Applying the second Green formula to u0 and u∗0 in the
domain ΩS situated between Ω1 and SR, we obtain∫

Σ

[
u0
∂u∗0
∂ν0
− u∗0

∂u0

∂ν0

]
dσr0 +

∫
SR

[
u0
∂u∗0
∂r
− u∗0

∂u0

∂r

]
dσr0 = 0, (139)

where ∂∂ν0 denotes the directional derivative in the direction of the unit normal vector ν to Σ directed into the
interior of Ω1 (external with respect to Ω0).
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Adding up (138) and (139) and taking into account the conjugation conditions on Σ, we have∫
SR

[
u0
∂u∗0
∂r
− u∗0

∂u0

∂r

]
dσr0 = 0. (140)

Applying the condition at infinity and transferring to the limit R→∞ in (140) we obtain

lim
R→∞

∫
SR

|u0|2ds = 0, (141)

Thus u0 ≡ 0 outside sphere SR according to Theorem 22. Applying the third Green formula (121) in ΩS we
obtain that u0 ≡ 0 in ΩS . Then applying the third Green formula in Ω1 we obtain that u1 ≡ 0 in Ω1.
Therefore, homogeneous problem (134)–(136) has only a trivial solution. The theorem is proved.
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Formulate a vector (electromagnetic) problem of the wave diffraction by a transparent body Ω1. Let Ω1 be a
domain bounded by a piecewise smooth surface Σ and Ω0 = R3 \ Ω1. The problem under consideration is
reduced to a BVP for the inhomogeneous system of Maxwell equations (69) and (70) with a piecewise constant
coefficient

rotHj = −iωεjEj + Jj, rotEj = iωµjHj, j = 0, 1, (142)

with the transmission conditions stating the continuity of the tangential field components across interface Σ

[H1, ν] = [H0, ν], [E1, ν] = [E0, ν], (143)

and the Silver–Müller radiation conditions at infinity

lim
r→∞

r ([H0, er]− ik0E0) = 0, k0 = ω
√
ε0µ0, (144)

where ν is the unit normal vector to Σ, er = r/r is the unit position vector of the points on Sr and the limit
holds uniformly with respect to all directions (specified by er). Note that in this case (142) can be written
equivalently (in every domain where the parameters are constant) as a one vector equation with respect to i.e.
E(r) by eliminating H(r):

rot rotEj − ω2εjµj Ej = J̃j, j = 0, 1. (145)
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Theorem 25
The solution to problem (142)–(144) is unique.

Proof. Since problem (142)–(144) is linear, it is sufficient to prove that the corresponding homogeneous
problem (with Jj = 0) has only a trivial solution. Next, one has to apply Theorem 23 and perform the same
steps as in the proof of Theorem 24 using Lorentz lemma instead of the Green formulas.
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Going back to the problems on normal waves we see that the form of solution in (85)

E (x) = (E1 (x′) e1 + E2 (x′) e2 + E3 (x′) e3) eiγx3 ,

H (x) = (H1 (x′) e1 +H2 (x′) e2 +H3 (x′) e3) eiγx3 ,

x′ = (x1, x2) ,

(146)

with the dependence eiγx3 on longitudinal coordinate x3 specify a wave propagating in the positive direction of
x3-axis. Problems on normal waves (88)–(90) have nontrivial solutions if

k̃2 = ε− γ2 = λDn or k̃2 = λNn , n = 1, 2, . . . , (147)

so that the eigenvalues of normal waves

γ = γDn =
√
ε− λDn or γ = γNn =

√
ε− λNn . (148)

We have 0 ≤ λD,N1 ≤ λD,N2 ≤ . . . ; therefore, that are at most finitely many values of γDn and γNn that are real,
while infinitely many of them are purely imaginary. Consequently, according to (146), there are at most finitely
many normal waves that propagate without attenuation (in the positive direction of x3-axis) and infinitely many
decay exponentially.
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Propagation of electromagnetic waves along the waveguide is described by the homogeneous system of Maxwell
equations which can be written in the form

rotH = −ikE, (149)

rotE = ikH,

with the boundary conditions for the tangential electric field components on the perfectly conducting walls Σ of
the waveguide

Eτ |Σ = 0, (150)

Look for particular solutions of (149) in the form

E = grad divP + k2P, (151)

H = −ikrotP,

using the polarization potential P = [0, 0,Π] that has only one nonzero component P3 = Π. It is easy to see
that

H3 = 0, E = [0, 0, E3], H = [H1, H2, 0], (152)

and this case is called TM-polarization or E-polarization Substituting (151) into (149) yields the equations

∆3Π + k2Π = 0 or ∆Π +
∂2Π

∂x2
3

+ k2Π = 0, (153)

∆3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.
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Condition (150) is satisfied if we assume that
Π|Σ = 0, (154)

because the third components of both P and E are actually tangential components that must vanish on the
waveguide wall and they are coupled by the first relation (151). (153) and (154) constitute the Dirichlet BVP
for the Helmholtz equation in the tube. We look for the solution to this problem in the form

Π(x) = Π(x′, x3) = ψ(x′)f(x3), x′ = (x1, x2), ψ(x′), f(x3) 6= 0, (155)

using the separation of variables. Namely, substituting (155) into (153) and dividing by nonvanishing product
fψ we have

f∆ψ + f ′′ψ + k2fψ = 0 or
∆ψ

ψ
+
f ′′

f
= −k2, (156)

which yields

∆ψ

ψ
= −λ,

f ′′

f
= λ− k2 (157)

with a certain constant λ.
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Thus ψ must solve the Dirichlet eigenvalue problem for the Laplace equation in cross-sectional domain Ω

∆ψ + λψ = 0, x′ ∈ Ω, (158)

ψ|Γ = 0.

Denote by Λ = {λn} and Ψ = {ψn} the system of eigenvalues and eigenfunctions of this problem. A particular
solution of (153) is

Π = Πn(x) = ψn(x′)fn(x3), (159)

where fn satisfies the equation

f ′′n + (k2 − λn)fn = 0. (160)

The general solution of (160) is

fn(x3) = Ane
iγnx3 +Bne

−iγnx3 , γn =
√
k2 − λn. (161)

The first and the second terms in (161) correspond, respectively, to the wave propagating in the positive or
negative direction of the waveguide axis.
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Considering the wave propagating in the positive direction set

fn(x3) = Ane
iγnx3 . (162)

As a result we obtain the solution

Πn(x′, x3) = Anψn(x′)eiγnx3 . (163)

We have 0 ≤ λ1 ≤ λ2 ≤ . . . ; therefore, that are at most finitely many values of γn =
√
k2 − λn with k2 > λn

that are real, while infinitely many of them, for γn = i
√
λn − k2 (i2 = −1) with k2 < λn, are purely imaginary.

Consequently, there are at most finitely many waves in the waveguide that propagate without attenuation (in
the positive direction of x3-axis) and infinitely many decay exponentially.
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Looking for particular solutions of (149) in the form

H = grad divP + k2P, (164)

E = ikrotP,

where the polarization potential P = [0, 0,Π] has only one nonzero component P3 = Π, it is easy to see that

E3 = 0, H = [0, 0, H3], E = [E1, E2, 0], (165)

and this case is called TE-polarization or H-polarization. Substituting (164) into (149) yields the equations

∆3Π + k2Π = 0 or ∆Π +
∂2Π

∂x2
3

+ k2Π = 0, (166)

∆3 =
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

Condition (150) is satisfied if we assume that

∂Π

∂n

∣∣∣∣
Σ

= 0, (167)

because the third components of P and the first two of E are tangential components that must vanish on the
waveguide wall and they are coupled by the first relation (164).
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Repeating the above analysis we see that

Π = Πn(x) = Anψn(x′)eiγnx3 , (168)

where ψn solves the Neumann eigenvalue problem for the Laplace equation in cross-sectional domain Ω

∆ψ + λψ = 0, x′ ∈ Ω, (169)

∂ψ

∂n

∣∣∣∣
Σ

= 0.

(168) specifies the wave propagating in the positive direction of the waveguide axis. Denote by ΛH = {λHn }
and ΨH = {ψHn } the system of eigenvalues and eigenfunctions of this problem. We have 0 ≤ λH1 ≤ λH2 ≤ . . . ;
therefore, that are at most finitely many values of γHn =

√
k2 − λHn with k2 > λHn that are real, while infinitely

many of them, for γHn = i
√
λHn − k2 with k2 < λHn are purely imaginary. Consequently, there are at most

finitely many waves in the waveguide that propagate without attenuation (in the positive direction of x3-axis)
and infinitely many decay exponentially.
The waves obtained from (151), (152) or (164), (165) are called, respectively, TM-waves or TE-waves.
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Diffraction from a dielectric obstacle in a 2D-guide. Introduce the complex magnitude of the stationary
electric and magnetic field, E(r, t) and H(r, t), respectively, where r = (x, y, z), and consider the problem of
diffraction of a TM wave (or mode)

E(r, t) = E(r) exp (−iωt), H(r, t) = H(r) exp (−iωt), (170)

E(r) = (Ex, 0, 0), H(r) =

(
0,

1

iωµ0

∂Ex

∂z
,−

1

iωµ0

∂Ex

∂y

)
, (171)

by a dielectric inclusion D in a parallel-plane waveguide W = {r : 0 < y < π, −∞ < x, z <∞}.

Figure .1: TE-mode diffraction by a dielectric inclusion in a parallel-plane waveguide
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The total field u(y, z) = Ex (y, z) = Eincx (y, z) + Escatx (y, z) = ui(y, z) + us(y, z) of the diffraction by the D
of the unit-magnitude TE wave with the only nonzero component is the solution to the BVP

[∆ + κ2ε (y, z)]u (y, z) = 0 in S = {(y, z) : 0 < y < π, −∞ < z <∞}, u(±π, z) = 0, (172)

u(y, z) = ui(y, z) + us(y, z), us(y, z) =
∞∑
n=1

a±n exp(iΓnz) sin(ny), (173)

where ∆ =
∂2

∂y2
+

∂2

∂z2
is the Laplace operator, superscripts + and − correspond, respectively, to the domains

z > 2πδ and z < −2πδ, ω = κc is the dimensionless circular frequency, κ = ω/c = 2π/λ is the dimensionless
frequency parameter (λ is the free-space wavelength), c = (ε0 µ0)−1/2 is the speed of light in vacuum, and
Γn = (κ 2 − n 2) 1/2 is the transverse wavenumber satisfying the conditions

ImΓn ≥ 0, Γn = i|Γn|, |Γn| = ImΓn = (n 2 − κ 2) 1/2, n > κ. (174)

It is also assumed that the series in (173) converges absolutely and uniformly and allows for double
differentiation with respect to y and z.
Note that ui(y, z) satisfies (172) in S, the boundary condition, and radiation condition (173) only in the
positive direction, so that the electromagnetic field with the x-component ui(y, z) may be interpreted as a
normal wave (a waveguide mode) coming from the domain z < −2πδ.
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Diffraction from a dielectric obstacle in a 3D-guide. Diffraction of electromagnetic waves by a dielectric body
Q in a 3D tube (a waveguide) with cross section Ω (a 2D domain bounded by smooth curve Γ) parallel to the
x3-axis in the cartesian coordinate system is described by the solution to the inhomogeneous system of Maxwell
equations

rotH = −iωε̂E + j0E

rotE = iωµ0H,
(175)

Eτ |∂P = 0, Hν |∂P = 0, (176)

admitting for |x3| > C and sufficiently large C > 0 the representations (+ corresponds to +∞ and − to −∞)

(E
H

)
=

∑
p

R
(±)
p e−iγ

(1)
p |x3|

(λ(1)
p Πpe3 − iγ(1)

p ∇2Πp

−iωε0(∇2Πp)× e3

)
+

+
∑
p

Q
(±)
p e−iγ

(2)
p |x3|

( iωµ0(∇2Ψp)× e3
λ

(2)
p Ψpe3 − iγ(2)

p ∇2Ψp

)
. (177)
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Here, γ
(j)
p =

√
k2

0 − λ
(j)
p , Im γ

(j)
p < 0 or Im γ

(j)
p = 0, k0γ

(j)
p ≥ 0, and λ

(1)
p , Πp(x1, x2) and λ

(2)
p , Ψp(x1, x2)

(k2
0 = ω2ε0µ0) are the complete system of eigenvalues and orthogonal and normalized in L2(Π) eigenfunctions

of the two-dimensional Laplace operator −∆ in the rectangle Πab = {(x1, x2) : 0 < x1 < a, 0 < x2 < b} with
the Dirichlet and the Neumann conditions, respectively; and ∇2 ≡ e1 ∂/∂x1 + e2 ∂/∂x2.
We assume that E0 and H0 are solutions of BVP under consideration in the absence of body Q,
ε̂(x) = ε0Î, x ∈ P (Î is the identity tensor):

rotH0 = −iωε0E0 + j0E

rotE0 = iωµ0H0,
(178)

E0
τ |∂P = 0, H0

ν |∂P = 0. (179)

These solutions can be expressed in an analytical form in terms of j0E using Green’s tensor of domain P . These
solutions should not satisfy the conditions at infinity (177). For example, E0 and H0 can be TM- or TE-mode
of this waveguide.
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The potential theory developed for the Laplace equation can be extended to the Helmholtz equation

L(c)u := (∆ + c)u = 0. (180)

In order to construct fundamental solutions consider, in spherical coordinates, a solution v0 = v0(r) depending
only on r; the Laplace operator has the form

∆v0 =
1

r2

d

dr

(
r2 dv0

dr

)
=

1

r

d2(rv0)

dr2
, (181)

which yields an ordinary differential equation

d2w

dr2
+ cw = 0, w = v0r. (182)

Its linearly independent solutions are

eikr

r
,

e−ikr

r
(c = k2 > 0), (183)

e−κr

r
,

eκr

r
(c = −κ2 < 0). (184)
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The fundamental solution

φ0(r) =
e−ikr

r
(185)

corresponds to an outgoing spherical wave

u0(r) =
ei(ωt−kr)

r
(186)

propagating off a source placed in the origin r = 0 where φ0(r) has a singularity ∼ 1
r

.
Another solution

v0(r) =
eikr

r
(187)

corresponds to an incoming spherical wave

u0(r) =
ei(ωt+kr)

r
(188)

propagating from a source at infinity. This solution is ignored because it has no direct physical sense.
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Using notation (180) we can write the second Green formula for the Helmholtz operator L and a domain T
bounded by a piecewise smooth surface Σ∫

T
[uLv − vLu]dτ =

∫
Σ

(
u
∂v

∂ν
− v

∂u

∂ν

)
dσ. (189)

Substituting instead of v a fundamental solution to the Helmholtz equation in the case of three dimensions and
repeating literally the proof applied for obtaining an integral representation for a solution to the Poisson
equation ∆u = −f (the third Green formula), we arrive at the integral representation of solution to the
inhomogeneous Helmholtz equation L(k2)u = −f

u(r) =
1

4π

∫
Σ

[
e−ikR

R

∂u

∂ν
− u

∂

∂ν

(
e−ikR

R

)]
dσr0 +

1

4π

∫
T
f(r0)

eikR

R
dτr0 , (190)

R = |r− r0| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2.

One can show that the volume potentials

v1(r) =
1

4π

∫
T
f(r0)

e−ikR

R
dτr0 , v2(r) =

1

4π

∫
T
f(r0)

eikR

R
dτr0 (191)

satisfies the inhomogeneous Helmholtz equation L(k2)u = −f . However, both these functions decay at infinity.
This fact dictates the necessity to introduce additional conditions specifying the behavior of solutions to the
Helmholtz equation at infinity which would enable one to uniquely determine the solution.
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Formulate the interior Dirichlet problem for the Helmholtz equation: find a function u continuous in D̄ = D ∪ Γ
that satisfies the Helmholtz equation in a domain D bounded by the closed smooth contour Γ,

L(k2)u = ∆u+ k2u = 0 in D, (192)

and the Dirichlet boundary condition
u|Γ = −f, (193)

where f is a given continuous function.
Formulate the interior Neumann problem: find a function u continuously differentiable in D̄ = D ∪ Γ that
satisfies the Helmholtz equation (192) in domain D bounded by the closed smooth contour Γ and the Neumann
boundary condition

∂u

∂n

∣∣∣∣
Γ

= −g, (194)

where ∂
∂n

denotes the directional derivative in the direction of unit normal vector n to the boundary Γ directed
into the exterior of Γ and g is a given continuous function.
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Let us also formulate Dirichlet and Neumann boundary eigenvalue problems for the Laplace equation: find a
nontrivial solution u ∈ C(D̄) or, respectively, u ∈ C1(D̄) to the homogeneous Dirichlet or Neumann BVPs

−∆u = λu in D, u|Γ = 0, (195)

or

−∆u = λu in D,
∂u

∂n

∣∣∣∣
Γ

= 0, (196)

that correspond to certain (in general complex) values λ called eigenvalues.
It is known that eigenvalues of the Dirichlet and Neumann boundary eigenvalue problems for the Laplace

equation in a domain D form the sets ΛDir,Neu = {λD,Nn }∞n=1 of isolated real numbers λD,Nn with the
accumulation point at infinity; also, 0 /∈ ΛDir and 0 ∈ ΛNeu. The complements ρDir,Neu = C \ ΛDir,Neu,
where C denotes the complex λ-plane, are called resolvent (regular) sets of the Dirichlet or Neumann BVPs for
the Laplace equation in D.
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According to the definition, the (interior) Dirichlet or Neumann BVPs (192), (193) or (192), (194) for the
Helmholtz equation in D have at most one solution if λ is not an eigenvalue; that is, if λ ∈ ρDir(D) or
λ ∈ ρNeu(D) is a regular value.

Theorem 26
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. The double layer potential

v(r) =

∫
Γ

∂

∂nr0

E(r− r0)ϕ(r0)dlr0 (197)

with a continuous density ϕ is a solution of the interior Dirichlet problem (192), (193) provided that
λ ∈ ρDir(D) is a regular value and ϕ is a solution of the integral equation

ϕ(r)− 2

∫
Γ

∂E(r− r0)

∂nr0

ϕ(r0)dlr0 = −2f(r), r ∈ Γ. (198)
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Theorem 27
Let D ∈ R2 be a domain bounded by the closed smooth contour Γ. The single layer potential

u(r) =

∫
Γ

E(r− r0)ψ(r0)dlr0 (199)

with a continuous density ψ is a solution of the interior Nuemann problem (192), (194) provided that
λ ∈ ρNeu(D) is a regular value and ψ is a solution of the integral equation

ψ(r) + 2

∫
Γ

∂E(r− r0)

∂nr
ψ(r0)dlr0 = 2g(r), r ∈ Γ. (200)
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Piecewise linear elements. An n-dimensional vector

a = [a1, a2, . . . , an]

is defined as an element of an n-dimensional space Rn and is an ordered set of n components a1, a2, . . . , an.
The n vectors

i1 = [1, 0, 0, . . . , 0], i2 = [0, 1, 0, . . . , 0], . . . , in = [0, . . . , 0, 1]. (201)

form an (orthonormal) basis in Rn. Each vector a = a = [a1, a2, . . . , an] ∈Rn can be written as a linear
combination of the basis vectors,

a = a1i1 + a2i2 + . . . ,+anin. (202)

To introduce the piecewise linear finite elements, divide interval [0, 1] in M (smaller) intervals Kj = [xj−1, xj ],
j = 1, 2, . . . ,M (M ≥ 2), with the points

x0 = 0 < x1 < x2 < · · · < xM−1 < xM = 1.

(in general, nonuniformly distributed with different distances between them hj = xj − xj−1, j = 1, 2, . . . ,M).
The corresponding (M + 1)-dimensional vector

XM = [x0, x1, x2, . . . , xM−1, xM ] (203)

is called partition of the base interval [0, 1].
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Note that for the points xj uniformly distributed with the distance h =
1

n
,

xj = jh, j = 0, 1 . . . ,M,

x0 = 0 < x1 = h < x2 = 2h < · · · < xM−1 = (M − 1)h < xM = Mh = 1. (204)

The corresponding partition

XM = [0, h, 2h, . . . , (M − 1)h, 1] = h[0, 1, 2, . . . ,M − 1,M ]. (205)

The piecewise linear elements are defined as

Φj(x) =



0 x0 ≤ x ≤ xj−1,
x−xj−1

hj
xj−1 ≤ x ≤ xj ,

xj+1−x
hj+1

xj ≤ x ≤ xj+1,

0 xj+1 ≤ x ≤ xM ,

j = 1, 2 . . .M − 1,

hj = xj − xj−1, j = 1, 2 . . . ,M. (206)

Each Φj(x) is a piecewise linear ’rectangular’ function such that

Φi(xj) =

 1 i = j,

0 i 6= j;
, i, j = 1, 2 . . .M − 1, (207)

it does not equal 0 in each subinterval [xj−1, xj+1] = Kj ∪Kj+1, j = 1, 2, . . . ,M − 1 (see Fig. .2).
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Figure .2: The piecewise linear elements.

Assume that XM = [x0, x1, x2, . . . , xM−1, xM ] is a given partition of [0, 1] into M subinterval Kj = [xj−1, xj ],
j = 1, 2, . . . ,M (M ≥ 2). Define the (M − 1)-dimensional space Sh = Sh(XM) of piecewise linear functions

Sh = {v ∈ Sh : v a linear in each subinterval Kj , v(0) = v(1) = 0, h = maxhj}. (208)
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Theorem 28
The set {Φj(x)} of piecewise linear elements is a basis in space Sh; i.e., any piecewise linear function can be
written as a linear combination of Φj(x).

Proof. A piecewise linear function F = F (M ;x) defined on the interval [0, 1] is a linear function on each
subinterval Kj = [xj−1, xj ], j = 1, 2, . . . ,M . This function vanishes on the endpoints of interval [0, 1] so, that
F (M, 0) = F (M, 1) = 0 and has M − 1 vertices and its derivative is undefined in these points.
Thus the function F = F (M ;x) is composed of M piecewise linear functions Fj(x),

F (M ;x) =


. . . . . . ,

Fj(x), x ∈ Kj ,

. . . . . . ,

, j = 1, 2 . . .M, (209)

Function F = F (M ;x) ∈ Sh has values Tj in nodes xj , j = 1, 2, . . . ,M − 1 (i.e., the function goes through the
points (xj , Tj), j = 0, 1, 2, . . . ,M) and for endpoints of the interval is defined as F (M, 0) := T0 = 0, and
F (M, 1) := TM = 0, respectively. Thus any subfunction Fj(x) goes through the points (xj−1, Tj−1), (xj , Tj),
and uniquely determined on each subinterval Kj = [xj−1, xj ] (as a linear function) by

Fj(xj−1) = Tj−1, Fj(xj) = Tj , (210)

We obtain that any piecewise linear function F = F (M ;x) ∈ Sh which has values Tj in the nodes xj is
uniquely determined on the interval [0, 1] under the conditions

Fj(xj) = Tj , j = 0, 1, 2, . . . ,M, T0 = TM = 0. (211)
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Now let us show that any given piecewise linear function F = F (M ;x) ∈ Sh which has values Tj in the nodes
xj , j = 0, 1, 2, . . . ,M , with T0 = TM = 0 is a linear combination of piecewise linear base elements Φj(x). A
linear combination of Φj(x) is

F̃ (x) =

M−1∑
i=1

TiΦi(x). (212)

F̃ (x) is a piecewise linear function (as a sum of piecewise linear functions) and

F̃ (xj) =

M−1∑
i=1

TiΦi(xj) = Tj (213)

F̃ (x0) =

M−1∑
i=1

TiΦi(x0) = 0, F̃ (xM ) =

M−1∑
i=1

TiΦi(x0) = 0, (214)

according to (207), so

F̃ (x) =

M−1∑
i=1

TiΦi(x) = F (M ;x) ∈ Sh. (215)
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Consider a (M − 1)-dimensional space Sh = (Xm) of piecewise linear functions. The minimal value of
parameter M = 2 gives us two subintervals K1 = [x0, x1] and K2 = [x1, x2]; Then the corresponding partition

X2 = [x0, x1, x2] = [0, x1, 1] (216)

is a 3-dimensional vector. For this partition, we can define only piecewise linear ’triangular’ elements Φ1(x) by
formula (206) for j = 1

Φ1(x) =


x−x0
h1

= x
h1

= x
x1

0 = x0 ≤ x ≤ x1,

x2−x
h2

= 1−x
h2

= 1−x
1−x1

x1 ≤ x ≤ x2 = 1,

h1 = x1 − x0 = x1, h2 = x2 − x1 = 1− x1, (217)

which satisfies (according to (207))

Φ1(x1) = 1, Φ1(x0) = Φ1(0) = 0, Φ1(x2) = Φ1(1) = 0, (218)

and not equal to 0 on the whole interval [x0;x2] = K1 ∪K2 = [0, 1]. In this case M = 2 and the basic element
Φ1(x) (217) is an element of one-dimensional space Sh = (x2) which consists of one piecewise linear
’triangular’ functions v(x) := CΦ1(x) with an arbitrary C:

Sh = Sh(X2) = {CΦ1(x) ∀C ∈ R},

v(x) ∈ Sh(X2) : v(x1) = C, v(x0) = v(0) = 0, v(x2) = v(1) = 0. (219)
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In the same way one can show that in the case M > 2, the (M − 1)-dimensional space Sh = Sh(XM)
consisting of piecewise linear functions which take values Tj in nodes xj , j = 1, 2, . . . ,M − 1 and vanishes in
nodes x0 = 0 and xM = 1 (and can be written as (212)),

Sh = Sh(XM) =

{
M−1∑
i=1

TiΦ1(x), ∀TM = [T1, T2, . . . , TM−1]

}
. (220)

We can determine piecewise linear base elements Φj(x) ∈ Sh(XM) with the base vectors (201) and a piecewise
linear function F = F (M ;x) ∈ Sh(XM) which takes values Tj , T0 = TM = 0, in nodes xj ,
j = 0, 1, 2, . . . ,M − 1,M . The (M − 1)-dimensional vector of the values is

TM = [T1, T2, . . . , TM−1] (221)

The set C1
0 (Ī0) denotes a set of continuously differentiable in the closed interval Ī0 = [0, 1] functions f(x)

which satisfy the following boundary conditions

f(x) ∈ C1
0 (Ī0) : f(0) = 0, f(1) = 0. (222)

A projection PM (f) of a function f(x) ∈ C1
0 (Ī0) in the (M − 1)-dimensional space Sh = Sh(XM) of piecewise

linear functions with respect to a given partition (203) XM = [x0, x1, . . . , xM ] (M ≥ 2) is defined as (212)

PM (f) =

M−1∑
i=1

f(xi)Φi(x). (223)

We can determine the projection PM (f) as a (M − 1)-dimensional vector

PM = [f1, f2, . . . , fM−1], fi = f(xi). (224)
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Consider a BVP for a linear differential equation of the second order Ay = −(ay′)′ + q(x)y = f(x), x ∈ I0 = (0, 1),

y(0) = 0, y(1) = 0,
(225)

where a(x), q(x) and f(x) are smooth functions satisfying the following conditions

a(x) ≥ a0 > 0, q(x) ≥ 0.
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The Variation formulation of BVP (225), or weak formulation, is given by

a(y, φ) = (f, φ) ∀φ ∈ C1
0 (Ī0), (226)

where

a(y, φ) =

∫ 1

0
[a(x)y′φ′ + q(x)y(x)φ(x)]dx, (227)

(f, φ) =

∫ 1

0
f(x)φ(x)dx. (228)

Divide an interval [0, 1] into M subintervals Kj = [xj−1, xj ] j = 1, 2, . . . ,M . The corresponding partition
XM = [x0, x1, . . . , xM−1, xM ] (M ≥ 2). To implement the numerical method for solving BVP (225), written
in the weak form as integral equation (226), we replace functions a(x), y(x), q(x) and f(x), for x ∈ Ī0 = [0, 1],
with their projections in the (M − 1)-dimensional space Sh = Sh(XM) by piecewise linear functions with
respect to a given partition XM = [x0, x1, . . . , xM−1, xM ] (M ≥ 2) and (226) with a finite-dimensional
approximation based on piecewise linear finite element (206).
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Finite-dimensional approximation. Formulate a finite-dimensional problem which approximates BVP (225) or
(226): find uh ∈ Sh(xm) such that

a(uh, φh) = (f, φh) ∀φ ∈ Sh(XM). (229)

Here uh is given by

uh =

M−1∑
j=1

UjΦj(x); (230)

it can be considered as the projection (223)

PM (u) =

M−1∑
i=1

u(xi)Φi(x) (231)

of the unknown solution u(x) ∈ C1
0 (Ī0) of BVP (225) in (M − 1)-dimensional space Sh = Sh(XM) of

piecewise linear functions with respect to partition (203)

XM = [x0, x1, . . . , xM−1, xM ] (M ≥ 2).
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Insert (230) into (229) to find that (229) is equivalent to

M−1∑
j=1

Uia(Φj(x),Φi(x)) = (f,Φi), i = 1, 2, . . . ,M − 1. (232)

or in the matrix form

AUM = f , (233)

where vector f = [f1, f2, . . . , fM−1] the load vector,

A = [aij ] =


a11 a12 . . . a1,M−1

a21 a22 . . . a2,M−1

. . . . . .

aM−1,1 aM−1,2 . . . aM−1,M−1

 ,
or

A =



a(Φ1,Φ1) a(Φ1,Φ2) a(Φ1,Φ3) . . . a(Φ1,ΦM−1)

a(Φ2,Φ1) a(Φ2,Φ2) a(Φ2,Φ3) . . . a(Φ2,ΦM−1)

a(Φ3,Φ1) a(Φ3,Φ2) a(Φ3,Φ3) . . . a(Φ3,ΦM−1)

. . . . . . .

a(ΦM−1,Φ1) a(ΦM−1,Φ2) a(ΦM−1,Φ3) . . . a(ΦM−1,ΦM−1)


(234)

is a stiffness matrix. The size (dimension) of matrix A is equal to (M − 1)× (M − 1) and it is a symmetric
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Note that function Φj(x) vanishes at the endpoints of the interval. The elements of the stiffness matrix A of
the BVP is determined by

a(Φj(x),Φi(x))) = a(Φi(x),Φj(x))) =

∫ 1

0
[Φ′iΦ

′
j + q(x)Φi(x)Φj(x)φ(x)]dx (235)

Some expressions ΦiΦj and Φ′iΦ
′
j vanish, e.g.

(Φj(x),Φi(x)) = (Φi(x),Φj(x)) =

∫ 1

0
Φj(x)Φi(x)dx = 0, |i− j| ≥ 2 (i, j = 1, 2, . . . ,M − 1). (236)
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Stiffness matrix A (234) of BVP (225) is a symmetric diagonal matrix of size (M − 1)× (M − 1)

A =



c0 0 0 0 · · · 0 0 0 0

a −b a 0 · · · 0 0 0 0

0 a −b a · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · a −b a 0

0 0 0 0 · · · 0 a −b a

0 0 0 0 · · · 0 0 0 cN


(237)

with elements

aij = 0, |i− j| ≥ 2 (i, j = 1, 2, . . . ,M − 1); (238)

namely

A =



a11 a12 0 0 · · · 0 0 0 0

a21 a22 a23 0 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 aM−2,M−3 aM−2,M−2 aM−2,M−1

0 0 0 0 · · · 0 0 aM−1,M−2 aM−1,M−1


(239)
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If q = const, we get

a(Φj(x),Φi(x)) = a(Φi(x),Φj(x)) =

∫ 1

0
[Φ′iΦ

′
j + qΦi(x)Φj(x)φ(x)]dx = (240)

= (Φ′i,Φ
′
j) + q(Φi,Φj)

and we can rewrite stiffness matrix A (234) as a matrix sum

A = Q1 +Q0, Q1 =
[
(Φ′i,Φ

′
j)
]
, Q0 = q [(Φi,Φj)] . (241)
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Consider an important case of the uniform partition (204) when points xj = jh, j = 0, 1 . . . ,M, are distributed

uniformly with the step h =
1

M
and piecewise linear base elements are determined as

Φj(x) =



0 x0 ≤ x ≤ xj−1,
x−xj−1

h
xj−1 ≤ x ≤ xj ,

xj+1−x
h

xj ≤ x ≤ xj+1,

0 xj+1 ≤ x ≤ xM ,

j = 1, 2 . . .M − 1. (242)

The expressions (Φj(x),Φi(x)) = 0, |i− j| ≥ 2 vanish according to (236). Nonzero elements are

(Φ′j ,Φ
′
j) =

∫ xj

xj−1

1

h2
dx+

∫ xj+1

xj

1

h2
dx =

2

h
, (243)

(Φ′j−1,Φ
′
j) =

∫ xj

xj−1

1

h

(
−

1

h

)
dx = −

1

h
, (244)

(Φj ,Φj) =

∫ xj

xj−1

(x− xj−1)2

h2
dx+

∫ xj+1

xj

(xj+1 − x)2

h2
dx =

2h

3
, (245)

(Φj−1,Φj) =

∫ xj

xj−1

(x− xj−1)

h

(xj − x)

h
dx =

h

6
, (246)

(i, j = 1, 2, . . . ,M − 1).
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Constant coefficients. If q = const, then the stiffness matrix A is rewritten as a sum of tridiagonal matrices

Q1 =
[
(Φ′i,Φ

′
j)
]

=
1

h



2 −1 0 0 · · · 0 0 0 0

−1 2 −1 0 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 2


(247)

and

Q0 = [(Φi,Φj)] = q
h

6



4 1 0 0 · · · 0 0 0 0

1 4 1 0 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 1 4 1

0 0 0 0 · · · 0 0 1 4


(248)
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If q = 0, then the stiffness matrix A coincides with matrix Q1. The finite-dimensional problem (225)
approximates the following BVP  −y′′ = f(x), x ∈ I0 = (0, 1),

y(0) = 0, y(1) = 0,
(249)

or

AUM = f ,

where

A = Q1 =
[
(Φ′i,Φ

′
j)
]

=
1

h


2 −1 0 · · · 0

−1 2 −1 · · · 0

...
...

...
...

0 0 · · · −1 2

 (250)

which coincides with the system obtained for BVP (249)

y′′ − q(x)y = f(x), d1 < x < d2,

y(d1) = f0, y(d2) = fN . (251)
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The forward and backward differences are determined as

∆yi = yx,i =
yi+1 − yi

h
, ∇yi = yx̄,i =

yi − yi−1

h
(252)

and

y′′ ≈ yx̄x = yx̄x,i =
yi+1 − 2yi + yi−1

h2
, (253)

−y′′ ≈ −yx̄x = −yx̄x,i =
−yi+1 + 2yi − yi−1

h2
,

and

−yx̄x,i = fi, i = 1, 2, . . . , N − 1, y0 = 0, yN = 0,

or 
y0 = 0

1
h

(−yi−1 + 2yi − yi+1) = hfi, 1 ≤ i ≤ N − 1,

yN = 0.

(254)

(254) is a system of linear equations.
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Approximate solution. Let U = [U1, . . . , UM−1] denote the solution of the linear system (233). The
approximate solution of BVP (225) is defined as a solution of corresponding finite-dimensional problem (225)

uh(x) =

M−1∑
j=1

UjΦj(x) (255)

The approximate solution uh is an element of (M − 1)-dimensional space Sh = Sh(XM) of piecewise linear
functions with respect to partition (203) XM = [x0, x1, . . . , xM−1, xM ] (M ≥ 2).
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Error estimate The error r = r(h) of the approximate solution of BVP (225) can be defined as

r(h) = ||uh − y||2 =

√∫ 1

0
[uh(x)− y(x)]2, (256)

where y(x) represents the exact solution of BVP (225) and h is the maximum length between adjacent nodes.
The error can be calculated approximately as the Euclidean norm

r(h) ≈ ||UM −YM||2 =

√√√√M−1∑
j=1

(Uj − yj)2, (257)

i.e., length of the discrepancy vector UM −YM, where YM = [y1, . . . , yM−1] with yj = y(xj),

j = 1, 2, . . .M − 1, is the projection (231) PM (y) =
∑M−1
i=1 y(xi)Φi(x) of the sought for solution

y(x) ∈ C1
0 (Ī0).

One can also determine the error approximately with the help of the maximum norm

r(h) ≈ ||UM −YM||c = max
1≤j≤M−1

|Uj − yj |. (258)

One can show that the following estimates hold to the relative error

||uh − y||2
||y||2

≤ Ch2 (259)

with some constant C. This means that one can solve approximately the BVP using the finite element method
with sufficiently small step h.
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Example 12

Solve the BVP  −y′′ + 4y = 2, 0 < x < 1,

y(0) = 0, y(1) = 0
(260)

with the help of the finite element method (uniform partition) by reducing it to a system of linear equations
with three unknowns. Calculate the approximate solution uh and determine the (approximate) error ||uh − y||
where y(x) is an exact solution of (260).

Solution. The weak formulation of BVP(260) is

a(y, φ) = (f, φ) ∀φ ∈ C1
0 (Ī0), (261)

where

a(y, φ) =

∫ 1

0
[y′φ′ + 4y(x)φ(x)]dx =

∫ 1

0
y′φ′dx + 4

∫ 1

0
y(x)φ(x)dx = (y′, φ′) + 4(y, φ), (262)

(f, φ) = 2

∫ 1

0
φ(x)dx. (263)
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The finite-dimensional problem, which approximates BVP (260) or equal weak problem (261), is reduced to a
system of linear equations with M − 1 = 3 unknowns U1, U2, U3 and three equations. In the case M = 4 we
obtain four subintervals

K1 = [x0, x1] = [0, h], K2 = [x1, x2] = [h, 2h],

K3 = [x2, x3] = [2h, 3h], K4 = [x3, x4] = [3h, 4h] = [3h, 1] (264)

with uniform partition

X4 = [x0, x1, x2, x3, x4] = [0, x1, x2, x3, 1] = [0, h, 2h, 3h, 4h] = h[0, 1, 2, 3, 4], h = 0.25. (265)

For this partition, we can define a piecewise linear base element Φj(x) according to (206) with j = 1, 2, 3. The
linear system of equation AU = f with three unknowns approximates BVP (260).
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The tridiagonal stiffness matrix A has a size 3× 3. We have q = const = 4; the stiffness matrix A is a sum of
symmetric tridiagonal matrices

Q1 =
[
(Φ′i,Φ

′
j)
]3
i,j=1

=
1

h


2 −1 0

−1 2 −1

0 −1 2

 =


8 −4 0

−4 8 −4

0 −4 8

 , (266)

Q0 = [(Φi,Φj)] = 4
h

6


4 1 0

1 4 1

0 1 4

 =


2/3 1/6 0

1/6 2/3 1/6

0 1/6 2/3

 , (267)

and

A =


a11 a12 0

a21 a22 a23

0 a32 a33

 =
[
(Φ′i,Φ

′
j) + 4(Φi,Φj)

]
= Q1 +Q0 =

=


8 −4 0

−4 8 −4

0 −4 8

+


2/3 1/6 0

1/6 2/3 1/6

0 1/6 2/3

 =


26/3 −23/6 0

−23/6 26/3 −23/6

0 −23/6 26/3

 =
1

6


52 −23 0

−23 52 −23

0 −23 52

 .
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The right side of system is determined as (263)

fi = (f,Φi) = 2

∫ 1

0
Φi(x)dx = 2

∫ 1

0
Φi(x)dx = 2

∫ xi+1

xi−1

Φi(x)dx = 2h = 0.5, i = 1, 2, 3.

Now we can write the linear system (??) AU = f with three unknowns which approximates (260)

52U1 − 23U2 = 3,

−23U1 + 52U2 − 23U3 = 3 (268)

−23U2 + 52U3 = 3

(we multiply both sides by 6).
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Solve this system using the Gaussian elimination:

23U1 − (23
2
/52)U2 = 3(23/52),

−23U1 + 52U2 − 23U3 = 3

−23U2 + 52U3 = 3

23U1 − (23
2
/52)U2 = 3(23/52),

(52 − (23
2
/52))U2 − 23U3 = 3(1 + (23/52))

−23U2 + 52U3 = 3

23U1 − (23
2
/52)U2 = 3(23/52),

23U2 − 23
2
/(52 − (23

2
/52))U3 = 3 · 23(1 + (23/52))/(52 − (23

2
/52))

−23U2 + 52U3 = 3

23U1 − (23
2
/52)U2 = 3(23/52),

23U2 − 23
2
/(52 − (23

2
/52))U3 = 3 · 23(1 + (23/52))/(52 − (23

2
/52))

(52 − 23
2
/(52 − (23

2
/52)))U3 = 3 + 3 · 23(1 + (23/52))/(52 − (23

2
/52))

The solution of system (268) is

U1 =
225

1646
= 0.137

U2 =
294

1646
= 0.179

U3 =
225

1646
= 0.137
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The error is approximately calculated using the Euclidean norm (257)

r(h) ≈ ||UM −YM||2 =

√√√√ 3∑
j=1

(Uj − yj)2. (269)

The exact solution of (260) is

y(x) = Ae2x +Be−2x +
1

2
, (270)

A =
1

2

1− e−2

e−2 − e2
= −0.060,

B =
1

2

e2 − 1

e−2 − e2
= −0.440. (271)

Projection (223) PM (f) =
∑3
i=1 y(xi)Φi(x) can be identified with 3-dimensional vector (224)

YM = [y1, y2, y3],

yi = y(xi) = y(ih) = y

(
i

4

)
= Aei/2 +Be−i/2 +

1

2
, i = 1, 2, 3.
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We have

y1 = 0.5− 0.06e1/2 − 0.44e−1/2 = 0.133,

y2 = 0.5− 0.06e− 0.44e−1 = 0.175,

y1 = 0.5− 0.06e3/2 − 0.44e−3/2 = 0.133.

The target error

r(h) ≈ ||UM −YM||2 =

√√√√ 3∑
j=1

(Uj − yj)2 =

=
√

(0.137− 0.133)2 + (0.179− 0.175)2 + (0.137− 0.133)2 = (272)

=
√

3 · 0.0042 =
√

12 · 10−6 = 3.464 · 10−3 ≈ 0.003.

The error can also be determined approximately with the help of the maximum norm (258)

r(h) ≈ ||UM −YM||c = max
1≤j≤3

|Uj − yj | = 0.004. (273)
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 1 Find derivative
dw

dt
of the function w =

√
x2 + y2 where x = e4t and y = e−4t.

Problem 2 Find grad f of the function f(x, y) = x2 − y2 and its value and length at the point P : (−1, 3).
Problem 3 Find the gradient −grad f for f(x, y, z) = z/(x2 + y2) and its value at the point P : (0, 1, 2).
Problem 4 Determine the divergence of

v(x, y, z) = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k = x2i + y2j + z2k.

Problem 5 Find curl of the vector field

v =
1

2
(x2 + y2 + z2)(i + j + k).

Problem 6 Determine a normal vector and unit normal vector to the xy-plane

r(u, v) = [u, v] = ui + vj

and parametric form of curves u = const and v = const.
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 7 Prove that the function (8)

Φ(x,y) = Φ(x− y) =
1

2π
ln

1

|x− y|

(the fundamental solution of the Laplace equation) is harmonic with respect to the coordinates of x for a fixed
y ∈ R2, y 6= x and with respect to y for a fixed x ∈ R2, x 6= y.
Problem 8 Reduce to a boundary integral equation the BVP in a rectangle
Πab = {(x, y) : 0 < x < a, 0 < y < b}

∆u = 0, u = u(x, y), 0 < x < a, 0 < y < b, u ∈ C2(Πab) ∩ C(Π̄ab)

u(0, y) = 0, u(a, y) = 0, 0 ≤ y ≤ b,

u(x, 0) = 0, u(x, b) = H(x), 0 ≤ x ≤ a,

H(x) =

 Q[p2 − (x− xS)2]2e−r(x−xS)2 , |x− xS | ≤ p,

0, |x− xS | ≥ p,
(274)

with suppH(x) = L = (xS − p, xS + p) ⊂ (0, a).
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 9 Let

E = grad divP + k2P, H = −ikrotP, P = [0, 0,Π].

Problem 10 Apply separation of variables and find eigenvalues λDn and eigenfunctions of the Dirichlet boundary
eigenvalue problem (195) for the Laplace equation in a rectangle Πab (see problem 8). Determine normalized

eigenfunctions with respect to the norm generated by the inner product (f, g) =

∫ ∫
Πab

fgdxdy in the space

L2(Πab) of square-integrable functions.
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Miniproject: example of inverse problem Prove that in the BVP in a rectangle
Πab = {(x, y) : 0 < x < a, 0 < y < b}

−∆u = F (x, y), u = u(x, y), 0 < x < a, 0 < y < b, u ∈ C2(Πab) ∩ C(Π̄ab)

u(0, y) = 0, u(a, y) = 0, 0 ≤ y ≤ b,

u(x, 0) = 0, u(x, b) = 0, 0 ≤ x ≤ a,

F (x, y) =

 A sin π
h1

[
x−

(
x0 − h1

2

)]
sin π

h2

[
y −

(
y0 − h2

2

)]
, (x, y) ∈ Πh1h2 (x0, y0),

0, (x, y) /∈ Πh1h2
(x0, y0),

(275)

with suppF (x, y) = Πh1h2
(x0, y0) ⊂ Πab,

Πh1h2
(x0, y0) =

{
(x, y) : x0 −

h1

2
< x < x0 +

h1

2
, y0 −

h2

2
< y < y0 +

h2

2

}
.

it is possible, under certain conditions, to uniquely determine any of the five parameters A, x0, y0, h1, h2

provided that the remaining four are given from the knowledge of one Fourier coefficient
u1 = u1(A, x0, y0, h1, h2) of u(x, y).
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OUTSIDE ACTIVITY AND GROUP DISCUSSIONS: PROBLEMS.

Problem 11 Determine explicit expressions for TM-waves in a waveguide of rectangular cross section
Πab = {(x1, x2) : 0 < x1 < a, 0 < x2 < b}.
Problem 12 The normal wave propagating along x3-axis in a waveguide with cross section Ω that corresponds to
the first (minimal) eigenvalue λ1 of the Dirichlet boundary eigenvalue problem for the Laplace equation in Ω is
often called the fundamental TM mode of the waveguide. Determine an explicit expression for the fundamental
TM mode in a waveguide of rectangular cross section Ω = Πab = {(x1, x2) : 0 < x1 < a, 0 < x2 < b}.
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